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Recall the Maxwell equations.
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Problem 1. Give the names for each of the Maxwell equations.

Problem 2. For each of the following items, give its name, give its units,
and classify the item as a scalar field, a vector field, or something else.

(a) V
(b
(c
(d

g\b

X

-
w <«

) E

)

)
(e)
(f)
(8) po
(h)
)

=

(i

Our attitude at the moment is to imagine that we know the charge and
current distributions, and we want to solve for the electric and magnetic
fields. This attitude leads us to think of the Maxwell equations as a set of
coupled partial differential equations.

Problem 3. Why are they partial differential equations, and not ordinary
differential equations? Why are they coupled?

Problem 4. Write out the Maxwell equations in Cartesian coordinates as
a set of coupled partial differential equations. Use the components F,, £,
and FE, rather than the vector E. Use the coordinates x, y, and z, and get
rid of the V symbol. How many equations are there in all? What are the
independent variables? What are the dependent variables? Are the Maxwell
equations linear? Homogeneous? First order? Second order?

Problem 5. Are the Maxwell equations ”better” than Coulomb’s law for
describing electricity? If so, how?

Problem 6. Can you name some ways in which electricity and magnetism
are related?



In this chapter, we are interested in the properties of electromagnetic
(EM) waves. The Maxwell equations can be used to show how accelerating
charges and oscillating currents create EM waves. The Maxwell equations
can also be used to show how EM waves interact with matter, for example
by reflecting, refracting, and scattering. Our goals for this chapter are more
fundamental. The most basic thing that a wave can do (more basic than being
created, or scattering, or getting absorbed) is to propagate. This chapter is
about the propagation of EM waves. Notably, the Maxwell equations also
describe the propagation of EM waves. The simplest propagation is through
empty space, where there is no matter, no charges, and no currents.

For the rest of this chapter, we are interested in solutions to the Maxwell
equations in free space, that is, in regions where there are no charges and no
currents.

Problem 7. Write down the free-space Maxwell equations.
Problem 8. Find the simplest solution to the free-space Maxwell equations.
Problem 9. Find another solution to the free-space Maxwell equations.

In order for a solution of the free-space Maxwell equations to be regarded
as a wave, it needs to oscillate in space and it needs to oscillate in time.

Electromagnetic waves are rather complicated waves, because we have two
vector quantities (the electric and magnetic fields) that depend on three space
dimensions and a time dimension. Before we search for wave-like solutions
to the free-space Maxwell equations, let us digress to think about waves in a
simpler setting.

1 Waves in One Spatial Dimension

1.1 Scalar waves in one space dimension

Let’s take a pressure wave as an example of a scalar wave. A pressure wave
is a scalar wave because pressure is a scalar quantity. To start, let’s make
things even simpler and work in a fantasy world that has only one space
dimension x and one time dimension ¢. Our pressure wave is described by a
function P(xz,t). This function tells you the pressure at position = and time
t. The function P will satisfy a wave equation
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where v is a constant with units of velocity that depends on the properties of
the fluid through which the pressure wave propagates. Every function that
describes a wave satisfies a partial differential equation like this. (Ordinary
differential equations can be used to describe oscillations, but we need partial
differential equations to describe waves.)

Problem 10. Find the simplest solution to the wave equation (1).
Problem 11. Find another solution to the wave equation (1).

In order for a solution of the wave equation (1) to be regarded as a
nontrivial wave, it needs to oscillate in space and it needs to oscillate in
time.

Our prototypical solution to wave equation (1) is

P(z,t) = Pycos(kx — wt), (2)

where Py is a constant with units of pressure, k is called the wavenumber,
and has units of inverse length, and w is the angular frequency, with units of
radians per unit time.

Notice that P(z,t) can be negative. This is because P(z,t) is a descrip-
tion of the relative pressure (also called gauge pressure) at position z at
time ¢, and not the absolute pressure. Relative pressure means pressure with
respect to the equilibrium pressure of the fluid through which the pressure
wave propagates.

Problem 12. What is the wavelength of (2)? Explain how you know.
Problem 13. What is the period of (2)? Explain how you know.

Problem 14. What is the frequency (denoted f or v) of (2)? Explain how
you know.

1.1.1 Points of constant phase

A useful way to think about what is happening with a traveling wave in one
spacial dimension, like (2), is to examine the points of constant phase. These
are the places (values of x) at which the pressure is the same. These places
will change in time. For example, suppose we decide to follow wave crests.
These are the places where the pressure is maximum, P(z,t) = Fy. The
cosine in (2) must give one at these places. Therefore, the argument of the
cosine function must be a multiple of 2.



Problem 15. For the wave described in (2), write a relationship between £,
r, w, and t that must hold at wave crests. Use this expression to give the
position of a wave crest as a function of time.

Problem 16. What is the velocity of a point on the crest of the wave (2)?

We don’t need to look at wave crests only. We could choose to follow wave
troughs (in which case we would take P(z,t) = —F,), points of equilibrium
pressure (in which case we would take P(z,t) = 0), or any other points (say
P(z,t) = Py/2, for example). In all of these cases, the points of constant
phase have the same velocity.

Problem 17. Show that points on the wave trough of (2) have the same
velocity as points on the wave crest.

Because, for a traveling wave like (2), any point of constant phase moves
with the same velocity, we will call this the wave velocity.

Problem 18. Insert (2) into wave equation (1), and find a relationship be-
tween v, k, and w that needs to hold in order for (2) to be a solution of (1).
In light of this relationship, what is the meaning of v in (1)?

Problem 19. Rewrite the relationship you found in the previous problem
in terms of wave speed v, wavelength A\, and period T'. Give a physical
interpretation for this relationship. (In other words, what does it mean?)
Also, give the relationship between v, A, and v.

Problem 20. In what direction is wave (2) propagating? Explain how you
know.

Problem 21. Write an expression for a wave propagating in the opposite
direction.

Problem 22. For wave (2), sketch a graph of P as a function of x at a fixed
time t. Sketch a second graph of P vs. x at a slightly later time, and a third
graph at a still later time.

1.1.2 Phase angle

Wave (2) has maximum pressure at = 0 at t = 0. There are solutions to
(1) very much like (2) that do not have this attribute.



Problem 23. Show that
P(z,t) = Pycos(kx — wt + 6) (3)
is a solution to (1) for any real number 6. We call 0 a phase angle.

Problem 24. Find a phase angle so that (3) is a wave with minimum pres-
sure at t =0, ¢t = 0.

Problem 25. Find a phase angle so that (3) is a wave with zero pressure
at x =0, t = 0. In fact, there are two different waves that have this feature.
See if you can find both.

1.1.3 Standing waves

A standing wave is a wave with nodes. A node is a place where the (relative)
pressure is zero and remains zero over time (remember zero relative pressure
means the equilibrium pressure of the fluid).

Problem 26. At t = 0, a pressure wave has nodes at —3L, —2L, —L, 0, L,
2L, 3L, etc. Write a function of position = describing the pressure.

Problem 27. Take the function of position from the previous problem and
make it into a wave by multiplying it by coswt. Show that the wave satisfies
the wave equation (1). Are there conditions that must hold in order for this
standing wave to be a solution?

Problem 28. For the standing wave you formed in the previous problem,
sketch a graph of P as a function of x at a fixed time ¢. Sketch a second
graph of P vs. x at a slightly later time, and a third graph at a still later
time.

Problem 29. What is the wavelength of the standing wave? What is the
period of the standing wave?

Problem 30. Do the wavelength, period, and speed v have the same rela-
tionship for the standing wave that they do for the traveling wave?

Problem 31. Consider the standing wave

P(z,t) = Pysin kx coswt.



Where are the nodes of this standing wave? What condition must hold for
this wave to satisfy the wave equation (1)? Write this standing wave as a sum
of a traveling wave propagating in the positive = direction and a traveling
wave propagating in the negative = direction. (You will need to use some
trigonometric identities to do this.)

Problem 32. Consider the standing wave
P(x,t) = Pysin ka sinwt.

Where are the nodes of this standing wave? What condition must hold for
this wave to satisfy the wave equation (1)7 Write this standing wave as a sum
of a traveling wave propagating in the positive x direction and a traveling
wave propagating in the negative x direction.

Problem 33. Consider the standing wave
P(z,t) = Pycos kx cos wt.

Where are the nodes of this standing wave? What condition must hold for
this wave to satisfy the wave equation (1)? Write this standing wave as a sum
of a traveling wave propagating in the positive x direction and a traveling
wave propagating in the negative x direction.

Problem 34. Consider the standing wave
P(x,t) = Pycos kx sinwt.

Where are the nodes of this standing wave? What condition must hold for
this wave to satisfy the wave equation (1)? Write this standing wave as a sum
of a traveling wave propagating in the positive z direction and a traveling
wave propagating in the negative x direction.

1.1.4 Numerical solution of the wave equation

Let’s return to the one-dimensional scalar wave equation (1), which we repeat
here for convenience.
#pP 10°P
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To analyze this equation numerically, we discretize both space and time. In
space we choose a spacial step Ax that is small compared with important
length scales of the situation.

oP ) ~ P(x + Az/2,t) — P(x — Ax/2,1)

%@’ )~ Az
9P _P(r+ Ax/2,t) — SE(x — Az/2,t)
W(% )~ Azr
_ Pz +Ax,t) — P(x,t) — [P(x,t) — P(v — Aw,t)]
~ Ax?
_ P(x+ Az, t) — 2P(x,t) + P(z — Az, t)
- Az?

In time we choose a time step At that is small compared with important
time scales of the situation.
0*P _ P(z,t+ At) = 2P(x,t) + P(x,t — At)
gz (D~ Af?

Now insert our discrete approximations into the wave equation.

Pz + Ax,t) = 2P(x,t) + Pz — Az, 1) 1 Pzt + At) = 2P(z,t) + Pz, t — At)
Ax? 2 At?

Multiply both sides by v?At?, then switch sides.

v2AL?

P(a, t+A0)=2P(x, )+ P(w,t=At) = ——-

[P(z + Ax,t) — 2P(z,t) + P(z — Az, t)]

Now solve for P at the future-most time in terms of P at the present and in
the past.

P(z,t + At) = 2P(x,t) — P(z,t — At)

vEAE
+ AL [P(x + Ax,t) — 2P(z,t) + P(x — Az, t)]
2 A 42
—9 (1 - UAAZ) Pla,t) — Pa,t — At)
T
2 A 42
% [P(x+ Ax,t) + P(x — Ax,t)]



I suspect we need

vAt
— <1
Ax —

for stability. However, people who have studied this in detail found that we
get the smallest error if we hug the stability threshold and take

vAt
Azx
The the previous equation simplifies to

P(xz,t + At) = P(x + Az, t) + P(x — Az, t) — P(x,t — At). (4)

1.

1.1.5 Boundary Conditions

When we work analytically with waves in one spatial dimension, we consider
the entire real line of all x values as our space. The variable x ranges over
the entire region —oo < x < 0.

When we do numerical work with a finite spatial step Az and a finite
time step At, we are typically paying attention to only a finite length of
one-dimensional space. The values of x are limited by boundaries at the left
and the right. The variable x may only range over an interval like 0 < z < L
for some length L.

This raises the question of what to do at the left and right boundaries.
Suppose that our left boundary occurs at x = 0. The update equation

P(z,t+ At) = P(z + Ax,t) + P(x — Az, t) — P(z,t — At)

tells us that we need the value of P at x — Az = —Ax, which is to the left of
zero, and hence outside the region we are keeping track of. We don’t have a
value to plug into the equation. So, we need to make a decision about what
to do. This is the problem of “boundary conditions” as they apply to the
numerical solution of partial differential equations.

One simple choice is to fix the boundaries at P = 0, in other words to
demand that the value of the dependent variable (P in this case) must take
the value zero at the boundaries. This is a convenient choice, and has the
effect of making waves reflect when they get to the boundary. It it also a
useful choice for standing waves. It is not a great choice for a traveling wave.

A second choice is to decide what values the boundary will have, and let
those values change in time. In this way, we can simulate a source of the
wave, like shaking the end of a string up and down.
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If you get deeper into this subject of the numerical analysis of partial
differential equations, you will find that there are many choices, some subtle
and complex, for what to do at the boundaries. We do not have time to go
into these details. We will use one of the two options mentioned above.

1.2 EM waves in one space dimension

Problem 35. In Problem 4, we wrote the Maxwell equations in Cartesian
coordinates. There were eight equations in all. Start with these equations
and suppose that nothing depends on y or z. This implies that any partial
derivatives with respect to y or z must vanish. Write a set of eight simpler
equations for this situation.

Problem 36. There are six dependent variables in the eight equations you
just wrote down: E,, E,, E., B,, B, and B,. In the Maxwell equations of
Problem 4, all six were coupled together.

In this newest set of eight equations, the dependent variables partially
uncouple from each other. Place each dependent variable into a bag so that
it only appears in equations with other dependent variables in that bag. How
many bags are there, and who is in each bag?

Problem 37. Each of the eight one-spatial-dimension Maxwell equations can
be placed into one of the bags you defined in the previous problem. Each
equation goes in the bag in which the dependent variables in the equation
live. Show how the eight Maxwell equations get divided up.

Problem 38. An inhomogenous wave equation is a wave equation with a
source term. It has the form

0*P 1 0°P
or?2  v?2 Ot?

where f is a source term that can create waves.

One of the bags you found in the last problem has two dependent variables
in it. Two of the eight equations contain those two variables. Try to make
an inhomogeneous wave equation using those two equations. (Hint: take
the time derivative of one equation, take the space derivative of the other
equation, then add or subtract.) What dependent variable (E,, E,, E., By,
By, or B,) plays the role of P in the inhomogeneous wave equation? What
expression plays the role of v?

=/ ()
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1.2.1 Numerical Solution of the Inhomogeneous Wave Equation

Let’s work with the inhomogeneous wave equation for £,. The others aren’t

much different.
0*E, 0?E, 0Jy
gz 100 T Hy,

The rest of the section needs to be revised in light of the time derivative.
Then, my Haskell code needs to be updated. Do we want to take a numerical
derivative, or do we want to give the source term as the time-derivative of
Jy?

Insert our discrete spatial step Az and our discrete time step At, we get
the following approximate result.

E,(x+ Az, t) = 2E,(x,t) + E, (v — Az, 1)
Ax?
1 By(z,t + At) — 2By (x,t) + Ey(z,t — A?)

2 At? + oy

Assume the stability limit Az = vAt and multiply the equation by v?At2.

E,(z + Az, t) + Ey(z — Ax,t) = E (v, t + At) + E,(x,t — At) + v’ At?poJ,
1
E,(z + Ax,t) + E,(x — Ax,t) = B, (x,t + At) + E,(z,t — At) + —A#*J,
€0

1
E,(z,t + At) = Ey(z + Ax,t) + B, (v — A, t) — B, (7, t — At) — —A#?J,
€o

2 Waves in Two Spatial Dimensions

2.1 Scalar waves in two space dimensions

Let’s continue to consider a pressure wave as an example of a scalar wave.
Let’s make things slightly richer by working in a world that has two space
dimensions x and y, and one time dimension ¢. Our pressure wave is now
described by a function P(z,y,t). This function tells you what the pressure
is at position (x,y) and time t. The function P will satisfy a wave equation

o?P N o?pP B i82P
ox?  0y?> w2 Ot?

=0, (6>
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where v is a constant with units of velocity that depends on the properties
of the fluid through which the pressure wave propagates.
Our favorite solution to (6) is

P(x,y,t) = Pycos(k,x + kyy — wt +0). (7)

Problem 39. Insert (7) into (6) and find any conditions that must hold in
order for (7) to be a solution to (6).

We wish to understand the meaning of k, and k, in (7). To help us
understand that, we will look at the lines of constant phase.

2.1.1 Lines of constant phase

In two spacial dimensions, a wave like (7) has lines of constant phase rather
than points of constant phase.

Problem 40. For the wave described in (7), write the equation of a line in
the xy plane that describes one of the wave crests at time .

Problem 41. Now write the equation of a line in the zy plane that describes
one of the wave crests at time ¢ + At. Sketch the line of wave crests at time
t in the zy plane and the line of wave crests at time ¢t + At on the same
picture.

Problem 42. Find the distance between these two lines in the zy plane.

Problem 43. Use the result of the previous problem to find the speed of
the wave.

Problem 44. Find the lines of constant phase for the wave (7) with k, =
1 w _ 1l w —

%;, l{?y = 755, and § = 0.

Problem 45. What is the direction of propagation for the wave in the pre-

vious problem?

Problem 46. Find the lines of constant phase for the wave (7) with &k, = #,
k, =0, and ¢ = 0. Give the direction of propagation.

Problem 47. Find the lines of constant phase for the wave (7) with k, = 0,
ky, =2, and 0 = 0. Give the direction of propagation.

13



Problem 48. What can you say about the relationship between the lines of
constant phase and the direction of propagation?

Problem 49. What can you say about the relationship between the vector
k.i+ k,j (called the wave vector) and the direction of propagation?

Problem 50. Write a pressure wave in 2D traveling in the negative = direc-
tion, with angular frequency w, amplitude F,, and wave speed v.

Problem 51. Write a pressure wave in 2D traveling in the negative y direc-
tion, with wavelength A\, amplitude Fy, and wave speed v.

A wave is any solution to a wave equation. A traveling wave is a wave
with a well-defined direction of propagation.

Problem 52. Give an example of a 2D wave without a well-defined direction
of propagation.

Problem 53. Give an example of a 1D wave without a well-defined direction
of propagation.

Problem 54. Sketch a 2D traveling wave (P as a function of x and y) at ¢,
t+ At, and t + 2At.

2.1.2 Standing waves in 2D
Problem 55. Is

P(x,y,t) = Pysin kyx sin kyy coswt
a solution to wave equation (6)? If so, describe its nodes.
Problem 56. Is

P(z,y,t) = Pysin kyx cos(kyy — wt)
a solution to wave equation (6)? If so, describe its nodes.

Problem 57. Write an expression for a pressure wave P(z,y,t) with am-
plitude F,, wave velocity v and the following nodes. The lines x = 0 m,
r=2m,r=-2m,xr=4m, xr = —4m, and so on are nodes. The lines
y=0m,y=3m,y=-3m,y=06m, y=—6m, and so on are nodes.

14



2.1.3 Linearity

Wave equations (1) and (6) are linear, homogeneous partial differential equa-
tions. This means that the sum of any two (or more) solutions is also a
solution. In fact, we can build up all possible solutions as sums of traveling
wave solutions.

2.2 EM waves in two space dimensions

Problem 58. In Problem 4, we wrote the Maxwell equations in Cartesian
coordinates. There were eight equations in all. Start with these equations
and suppose that nothing depends on z. This implies that any partial deriva-
tives with respect to z must vanish. Write a set of eight simpler equations
for this situation.

Problem 59. There are six dependent variables in the eight equations you
just wrote down: E,, E,, E., B, By, and B,. In the Maxwell equations
of Problem 4, all six were coupled together. On the other hand, in the
one-spatial-dimension Maxwell equations, where nothing depends on y or z,
the six dependent variables partially decoupled into four bags: the first bag
contained £, the second bag contained B,, the third bag contained £, and
B., and the fourth bag contained £, and B,.

In this newest set of eight equations, the dependent variables again par-
tially uncouple from each other, but not as much as in the case of one spatial
dimension. Place each dependent variable into a bag so that it only appears
in equations with other dependent variables in that bag. How many bags are
there, and who is in each bag?

Problem 60. Each of the eight two-spatial-dimension Maxwell equations can
be placed into one of the bags you defined in the previous problem. Each
equation goes in the bag in which the dependent variables in the equation
live. Show how the eight Maxwell equations get divided up.

15



2.2.1 Numerical Solution of the 2D TM Mode

0B, OE,

_— 8
ot dy ®)
0B, OE.
o ©)
0E. ,0B, 0B, 1

= - - |
o S ar Sy a (10)

Bi(z,y,t + At)2) — By(v,y,t — At/2)

At
EZ($, Y+ Ay/2>t) — Ez<x>y B Ay/2vt)
= — X
By(z,y,t + At/2) — B, (z,y,t — At/2)
At
E.(x+ Ax/2,y,t) — E,(x — Az /2,y,1)

0 _8 0 A

E, ,0B, ,0B, 1

o o oy o

3 Waves in Three Spatial Dimensions

3.1 Scalar waves in three space dimensions

Let’s continue to consider a pressure wave as an example of a scalar wave.
We now work in a world that has three space dimensions z, y, and z, and
one time dimension t. Our pressure wave is now described by a function
P(z,y, z,t). This function tells you what the pressure is at position (z,y, z)
and time t.

Problem 61. Write down the wave equation that P(z,y, z,t) will satisfy.
Use Cartesian coordinates.

Problem 62. Rewrite the wave equation that P(r,t) will satisfy, using the
Laplacian operator V2. Put it in the box below. This wave equation is now
expressed in a coordinate-free manner, because it does not make explicit
reference to the Cartesian coordinates x, y, and z.

16



(11)

Problem 63. In analogy with (3) and (7), write down the general traveling
wave solution to (11) in Cartesian coordinates.

Problem 64. Rewrite the solution in a coordinate-free manner, in terms of
the vector k, the vector r, and the dot product. Put it in the box below.

(12)

Problem 65. Give the conditions that must hold for (12) to be a solution
to (11).
3.1.1 Planes of constant phase

In three spacial dimensions, a wave like (12) has planes of constant phase
rather than points or lines of constant phase.

Problem 66. Find the planes of constant phase (lets choose wave crests, to
be concrete) for the wave (12) with

w 1. 1 -
k=——j+—=k
v(\/ﬁ‘] \/ﬁ)
and ¢ = 0.

Problem 67. What is the direction of propagation for the wave in the pre-
vious problem?

Problem 68. What can you say about the relationship between the planes
of constant phase and the direction of propagation?

Problem 69. What can you say about the relationship between the vector
k and the direction of propagation?

17



Problem 70. Write a pressure wave in 3D traveling in the direction i—l—j +k
with angular frequency w, amplitude F,, and wave speed v.

Problem 71. Write a pressure wave in 3D traveling in the negative y direc-
tion, with period T', amplitude F,, and wave speed v.

4 EM Waves

4.1 EM Wave Equation

The Maxwell equations do not look like a wave equation. A wave equation
is a partial differential equation that has second derivatives in space and a
second derivative in time. The Maxwell equations have only first derivatives.

Problem 72. Derive a wave equation for the electric field E from the free-
space Maxwell equations. (Hint: Take the curl of Faraday’s law, take the
time derivative of the Ampere-Maxwell law, subtract, and simplify.)

Problem 73. Compare this wave equation to (1), (6), and (11), and say
what you think the speed of EM waves will be based on this comparison.

Problem 74. Derive a wave equation for the magnetic field B from the
free-space Maxwell equations.

We seek wave solutions to the free-space Maxwell equations. Let us begin
by trying solutions with an electric field

E(r,t) = Egcos(k - r — wt + §). (13)

4.2 Constraints

Not everything that looks like an EM wave is going to be an EM wave that
satisfies the Maxwell equations. There are some constraints.

Problem 75. Substitute (13) into the free-space Gauss’s law and obtain a
condition that must be satisfied in order for (13) to be a solution to the
free-space Maxwell equations. How would you state this condition in words?

18



Problem 76. Let’s prove a little lemma (Do you know what a lemma is?
It’s a little helping theorem.) that will help us in two of the problems to
come. If

A(r,t) = Agcos(k-r —wt+9),

show that
V xA=-kxApsink-r—wt+9).

Problem 77. Substitute (13) into Faraday’s law and find all functions B(r, t)
that will satisfy it.

Problem 78. If, in the previous problem, we ignore the constant magnetic
field that comes about as a constant of integration, we get a unique magnetic
field that satisfies Faraday’s law for the electric field (13). Write down that
magnetic field in the box below.

(14)

Problem 79. Show that the magnetic field (14) satisfies the “no magnetic
monopoles” law.

Problem 80. Substitute (13) and (14) into the free-space Ampere-Maxwell
law and give any conditions that must be satisfied for them to be a solution.

Problem 81. In light of the previous problems, state precisely the informa-
tion that must be given to specify a plane traveling EM wave.

Problem 82. Consider the electromagnetic field

E(I’, t) = E() COS(kE - — wEt —+ 5E)
B(r,t) = Bocos(kp - r —wpt + dp).

How many of the parameters
EOxa E0y7 E0Z7 BOJI: BOy7 BOz7 kE$7 kEy; kEZa kB:B) kBy7 sza Wg,ws, 5E7 5B

may be chosen independently, and how are the remaining parameters found
from the ones chosen?
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By convention, the direction of Eg is called the direction of polarization.
So, for example, an EM wave polarized in the z direction would have Ey =
Eoi.

Problem 83. Write down the electric and magnetic fields for a monochro-
matic plane wave of amplitude Ey, angular frequency w, and phase angle zero
that is traveling in the 2z direction and polarized in the x direction.

Problem 84. Write down the electric and magnetic fields for a monochro-
matic plane wave of amplitude Ey, angular frequency w, and phase angle zero
that is traveling in the z direction and polarized in the y direction.

Problem 85. Write down the electric and magnetic fields for a monochro-
matic plane wave of amplitude Ey, angular frequency w, and phase angle zero
that is traveling in the x direction and polarized in the y direction.

Problem 86. Write down the electric and magnetic fields for a monochro-
matic plane wave of amplitude Ey, angular frequency w, and phase angle zero
that is traveling in the x direction and polarized in the z direction.

Problem 87. Write down the electric and magnetic fields for a monochro-
matic plane wave of amplitude FEy, angular frequency w, and phase angle zero
that is traveling in the zy plane, making an angle of 7/4 radians with the
positive x axis, and polarized in the z direction.

Problem 88. Write down the electric and magnetic fields for a monochro-
matic plane wave of amplitude Fjy, angular frequency w, and phase angle zero
that is traveling in the xy plane, making an angle of 7/4 radians with the
positive x axis, and polarized in the —z direction.

Problem 89. Write down the electric and magnetic fields for a monochro-
matic plane wave of amplitude Ey, wavenumber k (the wavenumber k is the
magnitude of the wavevector k, so that £ = |k|), and phase angle zero that
is traveling in the zy plane, making an angle of 7/6 radians with the positive
x axis, and polarized in the z direction.

Any wave can be expressed as a linear combination of traveling waves.
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4.3 Energy and Momentum of EM Waves

Read section 8.1 of Griffiths, then try the next two problems.

Problem 90. Find the energy density associated with the EM wave (13)
and (14).

Problem 91. Find the Poynting vector associated with the EM wave (13)
and (14).

Read section 8.2 of Griffiths, then try the next problem.

Problem 92. Find the momentum density associated with the EM wave
(13) and (14).

4.4 Polarization of EM Waves
Counsider the EM wave

E:(r,t) = Eycos(kz — ket)i (15)
E .

B, (r,t) = =2 cos(kz — kct)j. (16)
c

Problem 93. Confirm that (15) and (16) are a solution to the Maxwell
equations.

This EM wave is said to be linearly polarized in the x direction, because
the electric field points in the x direction, and it does so at all points in space,
and at all times.

Consider the wave

E,(r,t) = Eysin(kz — ket)i (17)
E o

B, (r,t) = —2sin(kz — kct)j. (18)
C

Problem 94. Write this wave in our standard form (13) using cosines instead
of sines.
Problem 95. Consider the wave

E(I‘, t) = El (I', t) + EQ(r7 t)

B(r,t) = By(r,t) + Ba(r, t).

Does this wave have a well-defined direction of propagation? Is this wave
linearly polarized? If so, in what direction?
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Problem 96. Write the EM wave
E(r,t) = Egcos(k - r — wt + 0)
B(r,t) = Bocos(k - r — wt + §)
as a linear combination of
E(r,t) = Egcos(k - r — wt)
B(r,t) = Bocos(k - r — wt)
and
E(r,t) = Egsin(k - r — wt)
B(r,t) = Bysin(k - r — wt).

Problem 97. Write down the EM wave traveling in the z direction, linearly
polarized in the y direction, with wavenumber k, electric field amplitude FEj,
and zero phase angle. Call this wave E3 and Bs.

Traveling waves that are linearly polarized have electric fields that point
in the same direction at all points in space and at all times.

Problem 98. Consider the wave

E(r,t) = Ei(r,t) + E3(r, t)
B(r,t) = By(r,t) + Bs(r, t).

Does this wave have a well-defined direction of propagation? Is this wave
linearly polarized? If so, in what direction?

4.4.1 Circular polarization

Consider the wave

Ey(r,t) = Egsin(kz — ket)j (19)
E .

By(r,t) = — —sin(kz — kct)i. (20)
&
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Problem 99. Consider the wave

E(r,t) = Eq(r,t) + E4(r, t)
B(r,t) = By(r,t) + By(r, t).

Does this wave have a well-defined direction of propagation? Is this wave
linearly polarized? If so, in what direction?

Problem 100. For the wave in the previous problem, draw the electric and
magnetic field vectors at the origin at time ¢ = 0. Draw them also at a
slightly later time. What are they doing?

If the electric field at a fixed point in space changes direction in a clock-
wise way as viewed from a point farther out in the direction of propagation,
the wave is called right circularly polarized. A left circularly polarized wave
rotates counterclockwise in time, at a fixed spot, viewed from a point further
along the direction of propagation.

Problem 101. Which kind of polarization does the wave of problem 99
have? Construct a wave with the opposite polarization.

Problem 102. Describe the wave that you get if you take a linear combi-
nation of wave 1 (E; and B;) and wave 2 with unequal coefficients.

Problem 103. Describe the wave that you get if you take a linear combi-
nation of wave 1 and wave 3 with unequal coefficients.

Problem 104. Describe the wave that you get if you take a linear combi-
nation of wave 1 and wave 4 with unequal coefficients. This wave is said to
have elliptical polarization. Why is it called that?

5 Modes of the Electromagnetic Field

Every EM wave that travels in the z direction with wavenumber % (so that
the wavevector is k = kz) can be expressed as a linear combination of four
waves. (Waves 1 through 4 of the last section.)
Now let’s start with an arbitrary wavevector k. Let e; be a unit vector
perpendicular to the wavevector k, and define e, to be the unit vector
k

€y = —

X eq.
K|
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We claim that any traveling EM wave with wavevector k can be written as
a linear combination of the following four waves.

E(r,t) = EO cos(k - r — kct)eq (21)
Bi(r,t) = 7 O cos(k - T — ket)es (22)
Eo(r,t) = EO sin(k - r — kct)ey (23)
By(r,t) = 7 Osin(k - — ket e, (24)
Es(r,t) = E cos(k r — ket)es (25)
Bs(r,t) = —— cos(k r — kct)e (26)
Ey(r,t) = Ey sm(k r — kct)ey (27)
By(r,t) = —— s1n(k r — kct)e; (28)

These waves are called modes of the EM field. There are many ways to
choose a set of modes, since there are many choices for the direction of e;.
There are an infinite number of modes of the EM field. For each wavevector
k (of which there are an infinite number) there are four modes.

The significance of these modes is that any EM wave can be written as
a linear combination of these modes. In the language of linear algebra, the
modes form a basis for the vector space of solutions to the free-space Maxwell
equations. (I'm lying just a little bit, because I haven’t carefully dealt with
the degenerate solutions to the wave equation, like the constant and linear
solutions. Presumably, we would need to add in a few degenerate modes to
be able to form all of those solutions. I'm not going to worry about that.)

Problem 105. In problem 82, you found the number of parameters needed
to describe a linearly polarized plane EM wave. How many parameters are
needed to describe an arbitrary plane EM wave? (The adjective “plane”
here implies a well-defined wave vector.) What are the parameters needed
to describe such a wave?

6 Potentials of EM Waves

Now is a good time to glance at section 1.6 of Griffiths, which we skipped in
the fall. Here are two important results from that section.
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Theorem 1. If the curl of a vector field F vanishes everywhere, then F can
be expressed as the gradient of a scalar potential V.

VXF=0<=F=-VV
(The minus sign is purely conventional.)

Theorem 2. If the divergence of a vector field ¥ vanishes everywhere, then
F can be expressed as the curl of a vector potential A.

V- F=0«<=F=VxA

We can apply Theorem 2 to Gauss’s law for magnetism (V - B = 0) to
assert the existence of a magnetic vector potential A.

B=VxA (29)

Problem 106. Plug equation (29) into Faraday’s law and use Theorem 1
above to derive an equation for E in terms of the scalar and vector potentials.
How is this equation different from the relationship in electrostatics?

Problem 107. Write down scalar and vector potentials that give rise to (13)
and (14).
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