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Accelerating charges radiate.

▶ Accelerating charges are the source of EM radiation.

▶ It is not sufficient for charge to merely be moving. Stationary
and moving charge has EM fields associated with it, but these
EM fields are not radiation.

▶ Radiation is the creation of EM waves.



Maxwell equations as wave equations

If we choose the Lorenz gauge condition,

µ0ϵ0
∂V

∂t
+ ∇⃗ · A⃗ = 0

the Maxwell equations are inhomogeneous wave equations.

∇2V − 1

c2
∂2V

∂t2
= − 1

ϵ0
ρ

∇2A⃗− 1

c2
∂2A⃗

∂t2
= −µ0J⃗



Solutions to Maxwell equations

V (⃗r, t) =
1

4πϵ0

∫ ρ
(⃗
r′, t±

∣∣∣⃗r− r⃗′
∣∣∣)∣∣∣⃗r− r⃗′

∣∣∣ dv′

A⃗(⃗r, t) =
µ0

4π

∫ J⃗
(⃗
r′, t±

∣∣∣⃗r− r⃗′
∣∣∣)∣∣∣⃗r− r⃗′

∣∣∣ dv′

▶ We are setting c = 1.

▶ The integrals are over all space.



Retarded potentials

The solutions

V (⃗r, t) =
1

4πϵ0

∫ ρ
(⃗
r′, t−

∣∣∣⃗r− r⃗′
∣∣∣)∣∣∣⃗r− r⃗′

∣∣∣ dv′

A⃗(⃗r, t) =
µ0

4π

∫ J⃗
(⃗
r′, t−

∣∣∣⃗r− r⃗′
∣∣∣)∣∣∣⃗r− r⃗′

∣∣∣ dv′

are called retarded potentials because the charge and current
densities are evaluated at points in time before t. In other words,
the potentials at time t are thought to be produced by charges and
currents some distance away at a time before t.



Advanced potentials

The solutions

V (⃗r, t) =
1

4πϵ0

∫ ρ
(⃗
r′, t+

∣∣∣⃗r− r⃗′
∣∣∣)∣∣∣⃗r− r⃗′

∣∣∣ dv′

A⃗(⃗r, t) =
µ0

4π

∫ J⃗
(⃗
r′, t+

∣∣∣⃗r− r⃗′
∣∣∣)∣∣∣⃗r− r⃗′

∣∣∣ dv′

are called advanced potentials because the charge and current
densities are evaluated at points in time after t. Since it seems
impossible that the motion of charges and currents in the future
should determine the potentials now, most people ignore the
advanced potentials. Nevertheless, they are perfectly good
solutions to the Maxwell equations. Perhaps some day someone
will find a use for them or a different interpretation of them.



The Electric Dipole Radiator

q(t) = q0 cos(ωt)

−q(t) = −q0 cos(ωt)

d I(t) = q0ω sin(ωt)



Retarded scalar potential for the electric dipole radiator

Using the retarded potential

V (⃗r, t) =
1

4πϵ0

∫ ρ
(⃗
r′, t−

∣∣∣⃗r− r⃗′
∣∣∣)∣∣∣⃗r− r⃗′

∣∣∣ dv′

and assuming that our oscillating charges are point charges, we
have

V (⃗r, t) =
1

4πϵ0

[
q
(
t−

∣∣⃗r− d
2 ẑ

∣∣)∣∣⃗r− d
2 ẑ

∣∣ −
q
(
t−

∣∣⃗r+ d
2 ẑ

∣∣)∣∣⃗r+ d
2 ẑ

∣∣
]

=
1

4πϵ0

{
q0 cos

[
ω
(
t−

∣∣⃗r− d
2 ẑ

∣∣)]∣∣⃗r− d
2 ẑ

∣∣ −
q0 cos

[
ω
(
t−

∣∣⃗r+ d
2 ẑ

∣∣)]∣∣⃗r+ d
2 ẑ

∣∣
}



Geometry of the electric dipole radiator
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∣∣⃗r− d
2 ẑ
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Approximation 1: d ≪ r

∣∣∣∣⃗r± d

2
ẑ

∣∣∣∣ = √
r2 + (d/2)2 ± rd cos θ

= r

√
1± d

r
cos θ +

(
d

2r

)2

≈ r

(
1± d

2r
cos θ

)
= r ± d

2
cos θ



Approximation 2: d ≪ λ

λω = 2π, so d ≪ λ is equivalent to ωd ≪ 1∣∣∣∣⃗r± d

2
ẑ

∣∣∣∣ ≈ r ± d

2
cos θ

cos

[
ω

(
t−

∣∣∣∣⃗r± d

2
ẑ

∣∣∣∣)] ≈ cos

[
ω

(
t− r ∓ d

2
cos θ

)]
= cos[ω(t− r)] cos

(
ωd

2
cos θ

)
± sin[ω(t− r)] sin

(
ωd

2
cos θ

)
≈ cos[ω(t− r)]± sin[ω(t− r)]

ωd

2
cos θ



Approximation 1 again: d ≪ r

∣∣∣∣⃗r± d

2
ẑ

∣∣∣∣−1

= [r2 + (d/2)2 ± rd cos θ]−1/2

=
1

r

[
1± d

r
cos θ +

(
d

2r

)2
]−1/2

≈ 1

r

(
1∓ d

2r
cos θ

)



Exercise: Plug these approximations into the potential and
simplify.

V (⃗r, t) =
1

4πϵ0

{
q0 cos

[
ω
(
t−

∣∣⃗r− d
2 ẑ

∣∣)]∣∣⃗r− d
2 ẑ

∣∣ −
q0 cos

[
ω
(
t−

∣∣⃗r+ d
2 ẑ

∣∣)]∣∣⃗r+ d
2 ẑ

∣∣
}

cos

[
ω

(
t−

∣∣∣∣⃗r± d

2
ẑ

∣∣∣∣)] ≈ cos[ω(t− r)]± sin[ω(t− r)]
ωd

2
cos θ∣∣∣∣⃗r± d

2
ẑ

∣∣∣∣−1

≈ 1

r

(
1∓ d

2r
cos θ

)



Approximation 3: λ ≪ r

V (⃗r, t) =
q0 cos θ

4πϵ0r

{
d

r
cos[ω(t− r)]− ωd sin[ω(t− r)]

}
▶ λω = 2π, so λ ≪ r is equivalent to 1

r ≪ ω

V (⃗r, t) =
q0dω cos θ

4πϵ0r
sin[ω(r − t)]

▶ V is a spherical wave

▶ We are interested in the case d ≪ λ ≪ r. Is there a more
systematic way to impose this condition, instead of using
three approximations at various points in the derivation?



Retarded vector potential for the electric dipole radiator

Using the retarded potential

A⃗(⃗r, t) =
µ0

4π

∫ J⃗
(⃗
r′, t−

∣∣∣⃗r− r⃗′
∣∣∣)∣∣∣⃗r− r⃗′

∣∣∣ dv′

and assuming that our oscillating current is a line charge, we have

A⃗(⃗r, t) =
µ0

4π

∫ d/2

−d/2

I(t− |⃗r− zẑ|)ẑ
|⃗r− zẑ|

dz

≈ µ0q0dω

4πr
sin[ω(r − t)]ẑ

▶ Another spherical wave



Summary of potentials for the Electric Dipole Radiator

q(t) = q0 cos(ωt)

−q(t) = −q0 cos(ωt)

d I(t) = q0ω sin(ωt)

For the electric dipole radiator, under the conditions d ≪ λ ≪ r,
we found the retarded potentials.

V (⃗r, t) =
q0dω cos θ

4πϵ0r
sin[ω(r − t)]

A⃗(⃗r, t) =
µ0q0dω

4πr
sin[ω(r − t)]ẑ



Exercise: Compute the electric and magnetic fields from V

and A⃗.

V (⃗r, t) =
q0dω cos θ

4πϵ0r
sin[ω(r − t)]

A⃗(⃗r, t) =
µ0q0dω

4πr
sin[ω(r − t)]ẑ

E⃗ = −∇⃗V − ∂A⃗

∂t

B⃗ = ∇⃗ × A⃗



Electric field for the electric dipole radiator

E⃗ = −∇⃗V − ∂A⃗

∂t

≈ −q0dω
2 cos θ

4πϵ0r
cos[ω(r − t)]r̂+

µ0q0dω
2

4πr
cos[ω(r − t)]ẑ

=
µ0q0dω

2

4πr
cos[ω(r − t)](− cos θr̂+ cos θr̂− sin θθ̂)

= −µ0q0dω
2 sin θ

4πr
cos[ω(r − t)]θ̂

▶ E⃗ is a spherical wave polarized in the θ̂ direction.

▶ The sin θ means maximum radiation at the equator, hardly
any at the poles.

▶ The 1/r dependence is what makes this radiation.



At a sphere of any size around the radiator, the
time-averaged energy is the same.

E =
1

2

(
ϵ0E⃗ · E⃗+

1

µ0
B⃗ · B⃗

)
▶ Since E ∝ 1

r , the energy density E ∝ 1
r2
, so when we integrate

that over the surface of a sphere, we will get some constant,
independent of the radius of the sphere.

▶ The 1/r dependence of the electric field is what entitles this
particlular electric field to qualify as radiation. The energy
present a distance R from the radiator will still be present at a
distance of 2R, or 10R, or 106R.

▶ The electric field of a stationary charge, which is proportional
to 1/r2, does not qualify as radiation. In this case, the energy
density is proportional to 1/r4, so the total energy a distance
R from the radiator decreases as 1/r2.



Magnetic field for the electric dipole radiator

A⃗(⃗r, t) =
µ0q0dω

4πr
sin[ω(r − t)](cos θr̂− sin θθ̂)

B⃗ = ∇⃗ × A⃗

= −µ0q0dω
2 sin θ

4πr
cos[ω(r − t)]ϕ̂

▶ B⃗ is a spherical wave polarized in the ϕ̂ direction.

▶ The sin θ means maximum radiation at the equator, hardly
any at the poles.

▶ The 1/r dependence is what makes this radiation.



Energy density of the electric dipole radiation field

E⃗ = −µ0q0dω
2 sin θ

4πr
cos[ω(r − t)]θ̂

B⃗ = −µ0q0dω
2 sin θ

4πr
cos[ω(r − t)]ϕ̂

E =
1

2

(
ϵ0E⃗ · E⃗+

1

µ0
B⃗ · B⃗

)
=

µ0q
2
0d

2ω4 sin2 θ

16π2r2
cos2[ω(r − t)]

The time-averaged energy density is

⟨E⟩ = µ0q
2
0d

2ω4 sin2 θ

32π2r2
.



Momentum density of the electric dipole radiation field

E⃗ = −µ0q0dω
2 sin θ

4πr
cos[ω(r − t)]θ̂

B⃗ = −µ0q0dω
2 sin θ

4πr
cos[ω(r − t)]ϕ̂

▶ When c = 1, momentum density is the same as Poynting
vector S⃗.

S⃗ =
1

µ0
E⃗× B⃗

=
µ0q

2
0d

2ω4 sin2 θ

16π2r2
cos2[ω(r − t)]r̂



Electric dipole radiation field

〈∣∣∣S⃗∣∣∣〉 =
µ0q

2
0d

2ω4 sin2 θ

32π2r2



Power radiated through a sphere of radius R

P =

∫
S⃗ · da⃗

=

∫ π

0

∫ 2π

0

µ0q
2
0d

2ω4 sin2 θ

16π2r2
cos2[ω(r − t)]r2 sin θ dϕ dθ

=
µ0q

2
0d

2ω4

16π2
2π cos2[ω(R− t)]

∫ π

0
sin3 θ dθ

=
µ0q

2
0d

2ω4

6π
cos2[ω(R− t)]

Time-averaged power radiated is

⟨P ⟩ = µ0q
2
0d

2ω4

12π
.

▶ Note that the result doesn’t depend upon R.

▶ The strong dependence on ω is why the sky is blue.



Summary for the Electric Dipole Radiator

Under the conditions d ≪ λ ≪ r:

V (⃗r, t) =
q0dω cos θ

4πϵ0r
sin[ω(r − t)]

A⃗(⃗r, t) =
µ0q0dω

4πr
sin[ω(r − t)]ẑ

E⃗ = −µ0q0dω
2 sin θ

4πr
cos[ω(r − t)]θ̂

B⃗ = −µ0q0dω
2 sin θ

4πr
cos[ω(r − t)]ϕ̂

S⃗ =
µ0q

2
0d

2ω4 sin2 θ

16π2r2
cos2[ω(r − t)]r̂ ⟨P ⟩ = µ0q

2
0d

2ω4

12π



The Half-Wavelength Dipole Antenna

λ
2

I(z, t) = I0 cos(2πz/λ) cos(ωt)

λω = 2π

∂λc

∂t
+

∂I

∂z
= 0



Charge density for the half-wavelength dipole antenna

λω = 2π

∂λc

∂t
+

∂I

∂z
= 0

λc(z, t) = I0 sin(2πz/λ) sin(ωt)

I(z, t) = I0 cos(2πz/λ) cos(ωt)



The Magnetic Dipole Radiator

I(t) = I0 cos(ωt)

b



Retarded scalar potential for the magnetic dipole radiator

Using the retarded potential

V (⃗r, t) =
1

4πϵ0

∫ ρ
(⃗
r′, t−

∣∣∣⃗r− r⃗′
∣∣∣)∣∣∣⃗r− r⃗′

∣∣∣ dv′

and realizing that the loop is uncharged, we have

ρ(⃗r, t) = 0

and so
V (⃗r, t) = 0.



Retarded vector potential for the magnetic dipole radiator

Using the retarded potential

A⃗(⃗r, t) =
µ0

4π

∫
J⃗ (⃗r′, t− |⃗r− r⃗′|)

|⃗r− r⃗′|
dv′

and assuming that our oscillating current is a line charge, we have

r⃗′ = b(cosϕ′x̂+ sinϕ′ŷ)

A⃗(⃗r, t) =
µ0

4π

∫ 2π

0

I(t− |⃗r− b cosϕ′x̂− b sinϕ′ŷ|)ϕ̂
|⃗r− b cosϕ′x̂− b sinϕ′ŷ|

b dϕ′

▶ We should work on simplifying |⃗r− b cosϕ′x̂− b sinϕ′ŷ|.



Simplifying A⃗ for the magnetic dipole radiator

A⃗(⃗r, t) =
µ0

4π

∫ 2π

0

I(t− |⃗r− b cosϕ′x̂− b sinϕ′ŷ|)ϕ̂
|⃗r− b cosϕ′x̂− b sinϕ′ŷ|

b dϕ′

r⃗ = r sin θ cosϕx̂+ r sin θ sinϕŷ + r cos θẑ

▶ Exercise: Simplify the expression |⃗r− b cosϕ′x̂− b sinϕ′ŷ|.



Solution

∣∣⃗r− b cosϕ′x̂− b sinϕ′ŷ
∣∣ = √

r2 + b2 − 2rb sin θ cos(ϕ− ϕ′)

Knowing that b ≪ r:

▶ Find an approximate expression for |⃗r− b cosϕ′x̂− b sinϕ′ŷ|.
▶ Find an approximate expression for

|⃗r− b cosϕ′x̂− b sinϕ′ŷ|−1.



Approximate expressions

∣∣⃗r− r⃗′
∣∣ = √

r2 + b2 − 2rb sin θ cos(ϕ− ϕ′)

= r

√
1− 2

b

r
sin θ cos(ϕ− ϕ′) +

(
b

r

)2

≈ r

(
1− b

r
sin θ cos(ϕ− ϕ′)

)
= r − b sin θ cos(ϕ− ϕ′)

∣∣⃗r− r⃗′
∣∣−1

= [r2 + b2 − 2rb sin θ cos(ϕ− ϕ′)]−1/2

= r−1

[
1− 2

b

r
sin θ cos(ϕ− ϕ′) +

(
b

r

)2
]−1/2

≈ 1

r

(
1 +

b

r
sin θ cos(ϕ− ϕ′)

)



Calculating A⃗ for the magnetic dipole radiator

A⃗(⃗r, t) =
µ0

4π

∫ 2π

0

I(t− |⃗r− b cosϕ′x̂− b sinϕ′ŷ|)ϕ̂
|⃗r− b cosϕ′x̂− b sinϕ′ŷ|

b dϕ′

=
µ0I0b

4π

∫ 2π

0
cos{ω[t− r + b sin θ cos(ϕ− ϕ′)]}

1

r

(
1 +

b

r
sin θ cos(ϕ− ϕ′)

)
ϕ̂dϕ′

ϕ̂ = − sinϕ′x̂+ cosϕ′ŷ

▶ Why ϕ′ and not ϕ in this expression for ϕ̂?



Geometry of the magnetic dipole radiator

x

y

z


