#### Overview

#### Scott N. Walck

August 12, 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

#### Modern Electromagnetic Theory

The Maxwell Equations

$$\vec{\nabla} \times \vec{\mathbf{B}} - \mu_0 \epsilon_0 \frac{\partial \vec{\mathbf{E}}}{\partial t} = \mu_0 \vec{\mathbf{J}} \qquad \vec{\nabla} \cdot \vec{\mathbf{E}} = \frac{1}{\epsilon_0} \rho$$
$$\vec{\nabla} \times \vec{\mathbf{E}} + \frac{\partial \vec{\mathbf{B}}}{\partial t} = 0 \qquad \vec{\nabla} \cdot \vec{\mathbf{B}} = 0$$

The Lorentz Force Law

$$\vec{\mathbf{F}} = q(\vec{\mathbf{E}} + \vec{\mathbf{v}} \times \vec{\mathbf{B}})$$

(ロ)、(型)、(E)、(E)、 E) の(()

## Four Fundamental Forces

| Force           | Classical          | Quantum            |
|-----------------|--------------------|--------------------|
| Strong          | none               | QCD                |
| Electromagnetic | Maxwell Equations  | QED                |
| Weak            | none               | Electroweak Theory |
| Gravity         | General Relativity | ?                  |

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

## Three Theories in One



Magnetism

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Optics

Electromagnetic Theory is the first and most important example of a *field theory*.

- ▶ In physics, a *field* is a function of space or spacetime.
- ln a field theory, x, y, and z join t as independent variables.
- Fluid Dynamics and Electromagnetic Theory are examples of field theories.
- The most important fields are the scalar field (in which a number depends on position in space) and the vector field (in which a vector depends on position in space).
- Modern elementary particle theory is a quantum field theory, but in this course we restrict our attention to classical field theories.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Why are physicists so in love with electromagnetic theory?

(Why do you have to take two courses about it?)

- It describes one of the four fundamental forces of nature.
- It unites electricity, magnetism, and light into a single theory.
- It serves as the model for modern field theories of elementary particles.
- It obeys the laws of special relativity, even though it was developed 40 years earlier.
- It's the earliest theory that is still part of our current best understanding of the universe.
- If you only learn one field theory, it should be this one.

# Brief History of Electromagnetic Theory

| Physicist      | contribution                           | when?    |
|----------------|----------------------------------------|----------|
| ?              | made first lenses                      | 2500 BCE |
| Thales         | studied static electricity             | 600 BCE  |
| Chinese        | invented the compass                   | 0        |
| lbn al-Haytham | wrote Book of Optics                   | 1020     |
| Gilbert        | wrote On the Magnet                    | 1600     |
| Dufay          | identified two types of electricity    | 1733     |
| Franklin       | introduced lightning rod               | 1752     |
| Coulomb        | published Coulomb's law                | 1785     |
| Volta          | invented the battery                   | 1799     |
| Young          | described wave optics                  | 1803     |
| Oersted        | found current deflects compass         | 1820     |
| Faraday        | discovered electromagnetic induction   | 1831     |
| Maxwell        | published the <i>Maxwell equations</i> | 1865     |
| Planck         | quantized light                        | 1900     |
| Einstein       | used photons for photoelectric effect  | 1905     |
| Feynman        | worked on quantum electrodynamics      | 1940s    |
| Yee            | FDTD method for Maxwell Equations      | 1966     |

## Connections between Electricity and Magnetism

- 1. Electric current produces magnetic field (Oersted's discovery, 1820).
- 2. Changing magnetic field produces electric field (Faraday's discovery, 1831).
- 3. Changing electric field produces magnetic field (Maxwell's discovery, 1865).
- 4. Light is a wave of electric and magnetic fields (Maxwell's discovery, 1865).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Why computers in electromagnetic theory?

- 1. Most physical situations are not exactly solvable.
- 2. Why wouldn't we want to use modern tools?
- 3. Programming is a valuable skill in itself.
- 4. The language of the code can help you understand the theory.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00