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Laplace’s Equation

Electric potential ¢

Temperature T
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Solution to Laplace's Equation

Electric potential ¢
V24 =0

Temperature T
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Algebraic Solution to Laplace's Equation

V246 =0

Suppose that we know from symmetry that ¢ does not depend on
x or y, but depends only on z.
Cartesian coordinates are natural to choose in this situation.
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Since ¢ doesn't depend on x or y,
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Algebraic Solution to Laplace’s Equation, page 2
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The function ¢ depends only on one variable, so
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General solution:

¢(z) = Az+ B



Algebraic Solution to Laplace’s Equation, page 3

#(z)=Az+ B
Now apply boundary conditions. Suppose ¢(L/2) = 320 V and
d(—L/2) =300 V. At z = L2,
320 V=A(L/2)+ B
At z=—L/2,
300 V=A(-L/2)+ B
Subtract the two equations to get 20 V = AL, so

20V

A
L

B=310V

é(z) = (20 V)% +310V



Compare geometric intuition with algebraic solution

Electric potential ¢ #(z) = (20 V)% +310V
20
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- p(—L/2) = —%(20 V) 4310 V =300V

0
9(0) = (20 V)7 +310 V=310V



