Gauss's Law

Scott N. Walck

October 14, 2024

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Modern Electromagnetic Theory

▶ The Maxwell Equations

$$
\vec{\nabla} \times \vec{B} - \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t} = \mu_0 \vec{J} \qquad \vec{\nabla} \cdot \vec{E} = \frac{1}{\epsilon_0} \rho
$$

$$
\vec{\nabla} \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0 \qquad \vec{\nabla} \cdot \vec{B} = 0
$$

▶ The Lorentz Force Law

$$
\vec{F} = q(\vec{E} + \vec{v} \times \vec{B})
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Gauss's Law

$$
\vec{\nabla}\cdot\vec{E}=\frac{1}{\epsilon_0}\rho
$$

- \triangleright The divergence of electric field at a point in space is proportional to the charge density at that point.
- \triangleright Where there is positive charge density, the divergence of the electric field is positive. Where there is negative charge density, the divergence of the electric field is negative.
- ▶ Electric field points away from positive charge and toward negative charge.

KORKARYKERKER POLO

Flux

 \triangleright The flux of a vector field \vec{F} over a surface S is defined to be the dotted surface integral (or flux integral) of \vec{F} over S.

$$
\int_{S} \vec{F} \cdot d\bar{a}
$$

▶ If the vector field is the electric field, we call the flux electric flux.

$$
\Phi_E = \int_S \vec{E} \cdot d\vec{a}
$$

KORKARYKERKER POLO

 \triangleright The surface S can be open or closed, but you must have a surface to talk about electric flux.

Deriving the integral form of Gauss's Law

 \triangleright Start with the differential form of Gauss's law.

$$
\vec{\nabla}\cdot\vec{E}=\frac{1}{\epsilon_0}\rho
$$

 \triangleright Pick any volume V. Integrate both sides of Gauss's law over this volume V.

$$
\int_V (\vec{\nabla} \cdot \vec{E}) dv = \frac{1}{\epsilon_0} \int_V \rho dv
$$

▶ Use the divergence theorem to rewrite the left side. Realize that the integral on the right side is the charge contained in the volume.

$$
\int_{\partial V} \vec{E} \cdot d\vec{a} = \frac{1}{\epsilon_0} Q_{\text{enc}}
$$

KELK KØLK VELKEN EL 1990

 \triangleright The term on the left is the electric flux through the boundary of V.

Integral form of Gauss's Law

$$
\int_{\partial V} \vec{E} \cdot d\vec{a} = \frac{1}{\epsilon_0} Q_{\rm enc}
$$

- \triangleright The electric flux through a closed surface is proportional to the charge enclosed by the surface.
- \blacktriangleright If a charge distribution has high symmetry, we can use the integral form of Gauss's law to find the electric field produced by the charge distribution.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Using Gauss's law to find the electric field when the charge distribution has spherical symmetry

- \triangleright With spherical symmetry, ρ depends only on r, not on θ or ϕ .
- ▶ Any rotation about an axis through the origin leaves the charge distribution unchanged, and hence must leave the electric field unchanged.
- ▶ The electric field must point in the \hat{r} direction: $\vec{E} = E\hat{r}$.
- \triangleright The radial component E of the electric field can depend only on r, not on θ or ϕ .
- \blacktriangleright Choose a sphere of radius r as your Gaussian surface S. Notice that

$$
\int_{S} \vec{E} \cdot d\vec{a} = E 4\pi r^2.
$$

Using Gauss's law to find the electric field when the charge distribution has cylindrical symmetry

- \triangleright With cylindrical symmetry, ρ depends only on s, not on ϕ or z.
- \blacktriangleright Any rotation about the symmetry axis leaves the charge distribution unchanged, and hence must leave the electric field unchanged.
- ▶ Any translation parallel to the symmetry axis leaves the charge distribution unchanged, and hence must leave the electric field unchanged.
- \triangleright The electric field must point in the \hat{s} direction: $\vec{E} = E\hat{s}$.
- \triangleright The radial component E of the electric field can depend only on s, not on ϕ or z.
- \triangleright Choose a cylinder of radius s and length L as your Gaussian surface S. Notice that

$$
\int_{S} \vec{E} \cdot d\vec{a} = E2\pi sL.
$$

Using Gauss's law to find the electric field when the charge distribution has planar symmetry

- \triangleright With planar symmetry, ρ depends only on z, not on x or y.
- Any rotation about the z axis (or any axis parallel to z) leaves the charge distribution unchanged, and hence must leave the electric field unchanged.
- \triangleright Any translation in the xy plane leaves the charge distribution unchanged, and hence must leave the electric field unchanged.
- ▶ The electric field must point in the \hat{z} direction: $\vec{E} = E\hat{z}$.
- \triangleright The z component E of the electric field can depend only on z, not on x or y .
- \triangleright Choose a box with height 2z, width L, and length L as your Gaussian surface S. Notice that

$$
\int_{S} \vec{E} \cdot d\vec{a} = E 2L^2.
$$