
Fields in Haskell

Scott N. Walck

September 13, 2024

Position is a new type.

The 3 coordinate systems give us 3 ways to make a position.

cartesian :: (R,R,R) -> Position -- (x,y,z)

cylindrical :: (R,R,R) -> Position -- (s,phi,z)

spherical :: (R,R,R) -> Position -- (r,theta,phi)

There are convenience functions if you want to construct a
Position without commas and parentheses.

cart :: R -> R -> R -> Position

cyl :: R -> R -> R -> Position

sph :: R -> R -> R -> Position

There are convenience functions if you want to construct a
Position without commas and parentheses.

ghci> cyl 2 (pi/2) 4

Cart 1.2246467991473532e-16 2.0 4.0

▶ 1.2× 10−16 is as close as the computer can come to zero.

▶ Can you picture how (s, ϕ, z) = (2, π/2, 4) is the same point
as (x , y , z) = (0, 2, 4)?

A Position can be expressed in any of the 3 coordinate
systems.

cartesianCoordinates :: Position -> (R,R,R)

cylindricalCoordinates :: Position -> (R,R,R)

sphericalCoordinates :: Position -> (R,R,R)

ghci> cylindricalCoordinates (cart 0 2 0)

(2.0,1.5707963267948966,0.0)

A Displacement is a Vec from the source Position to
the target Position.

displacement :: Position -- source position

-> Position -- target position

-> Vec

ghci> displacement (cart 2 3 4) (cart 4 9 16)

vec 2.0 6.0 12.0

A displacement can shift a source Position to a target Position.

shiftPosition :: Vec -- displacement

-> Position -- source position

-> Position -- target position

ghci> shiftPosition (vec 2 6 12) (cart 2 3 4)

Cart 4.0 9.0 16.0

A scalar field is a function from position to numbers.

type ScalarField = Position -> R

Examples of scalar fields

▶ Volume charge density
(The number is charge density in C/m3.)

▶ Electric potential
(The number is electric potential in V.)

▶ Temperature
(The number is temperature in K.)

Encoding a scalar field in Haskell.

f (x , y , z) = x2 + y3 + z4

type ScalarField = Position -> R

fa :: ScalarField

fa r = let (x,y,z) = cartesianCoordinates r

in x**2 + y**3 + z**4

The local variable r has type Position.

Catalog entry 1.2.1 is a scalar field given in cylindrical
coordinates.

f (s, ϕ, z) = s2z cosϕ

type ScalarField = Position -> R

-- scalar field from Catalog 1.2.1

f :: ScalarField

f r = let (s,phi,z) = cylindricalCoordinates r

in s**2 * z * cos phi

The local variable r has type Position.

Catalog entry 1.3.4 is a scalar field given in spherical
coordinates.

f (r , θ, ϕ) = r2(3 cos2 θ − 1)

type ScalarField = Position -> R

-- scalar field from Catalog 1.3.4

f134 :: ScalarField

f134 p = let (r,theta,_phi) = sphericalCoordinates p

in r**2 * (3 * cos theta ** 2 - 1)

The local variable p has type Position.

A vector field is a function from position to vectors.

type VectorField = Position -> Vec

Examples of vector fields

▶ Electric Field
(The vector is electric field in N/C or V/m.)

▶ Magnetic Field
(The vector is magnetic field in T.)

▶ Volume Current Density
(The vector is current density in A/m2.)

Encoding a vector field in Haskell.

v⃗a = x2x̂ + 3xz2ŷ − 2xzẑ

type VectorField = Position -> Vec

va :: VectorField

va r = let (x,_y,z) = cartesianCoordinates r

in x**2 *^ iHat ^+^ 3 *^ x *^ z**2 *^ jHat

^-^ 2 *^ x *^ z *^ kHat

The local variable r has type Position.

Vectors and vector fields

type VectorField = Position -> Vec

iHat :: Vec

jHat :: Vec

kHat :: Vec

xHat :: VectorField

yHat :: VectorField

zHat :: VectorField

sHat :: VectorField

phiHat :: VectorField

rHat :: VectorField

thetaHat :: VectorField

Comparison of unit vectors and unit vector fields

v⃗a = x2x̂ + 3xz2ŷ − 2xzẑ

Two ways of writing this vector field:

va :: VectorField

va r = let (x,_y,z) = cartesianCoordinates r

in x**2 *^ iHat ^+^ 3 *^ x *^ z**2 *^ jHat

^-^ 2 *^ x *^ z *^ kHat

va2 :: VectorField

va2 r = let (x,_y,z) = cartesianCoordinates r

in x**2 *^ xHat r ^+^ 3 *^ x *^ z**2 *^ yHat r

^-^ 2 *^ x *^ z *^ zHat r

The local variable r has type Position.

A vector field expressed in cylindrical coordinates.

v⃗ = s(2 + sin2 ϕ)ŝ + s sinϕ cosϕϕ̂+ 3zẑ

type VectorField = Position -> Vec

v143 :: VectorField

v143 r = let (s,phi,z) = cylindricalCoordinates r

in s *^ (2 + sin phi **2) *^ sHat r

^+^ s *^ sin phi *^ cos phi *^ phiHat r

^+^ 3 *^ z *^ zHat r

The local variable r has type Position.

A vector field expressed in spherical coordinates.

v⃗ = (r cos θ)r̂ + (r sin θ)θ̂ + (r sin θ cosϕ)ϕ̂

type VectorField = Position -> Vec

v140 :: VectorField

v140 p = let (r,theta,phi) = sphericalCoordinates p

in r *^ cos theta *^ rHat p

^+^ r *^ sin theta *^ thetaHat p

^+^ r *^ sin theta *^ cos phi *^ phiHat p

The local variable p has type Position.

A Vec always shows in Cartesian components.

Consider the following vector field.

v⃗ = sϕ̂

v :: VectorField

v p = let (s,_phi,_z) = cylindricalCoordinates p

in s *^ phiHat p

If we ask GHCi for the particular vector at a particular point in
space, it gives us the result in Cartesian components.

ghci> v (cyl 2 (pi/2) 7)

vec (-2.0) 1.2246467991473532e-16 0.0

If we say v⃗(s, ϕ, z) = sϕ̂, then v⃗(2, π/2, 7) = −2x̂ . We could also
say v⃗(2, π/2, 7) = 2ϕ̂, but notice that the computer is giving us
the Cartesian components.

▶ Can you picture this in your head?

