Electrostatics

Scott N. Walck

August 29, 2025

Static Maxwell equations

$$\vec{\nabla} \cdot \vec{E} = \frac{1}{\epsilon_0} \rho \qquad \qquad \vec{\nabla} \cdot \vec{B} = 0$$

$$\vec{\nabla} \times \vec{E} = 0 \qquad \qquad \vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$$

- Left two equations describe electrostatics.
- Right two equations describe magnetostatics.
- In the static case, \vec{E} and \vec{B} do not appear together in any Maxwell equation.
- In the static case, electricity and magnetism are separate subjects.

Electrostatic Maxwell equations

$$ec{
abla} \cdot ec{E} = rac{1}{\epsilon_0}
ho$$

 $ec{
abla} imes ec{E} = 0$

- ► Top equation is Gauss's law.
- Bottom equation is Kirchhoff's law, the static version of Faraday's law.

Coulomb's law is the solution to Gauss's law and Kirchhoff's law.

lf

$$\vec{\nabla} \cdot \vec{E} = \frac{1}{\epsilon_0} \rho$$
 $\vec{\nabla} \times \vec{E} = 0$

then

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int_V \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3} \rho(\vec{r}') \ dv'.$$

Electric field produced by a point particle

- ▶ Point particle has charge q, located at $\vec{r'}$.
- ightharpoonup Field point is \vec{r} , where we want to know the electric field.

$$ec{E}(ec{r}) = rac{q}{4\pi\epsilon_0}rac{\hat{m{\imath}}}{\imath^2} = rac{q}{4\pi\epsilon_0}rac{ec{m{\imath}}}{\imath^3} = rac{q}{4\pi\epsilon_0}rac{ec{r}-ec{r'}}{\left|ec{r}-ec{r'}
ight|^3}$$

Electric field produced by a point particle at the origin

$$\vec{E}(\vec{r}) = \frac{q}{4\pi\epsilon_0} \frac{\vec{r} - \vec{r'}}{\left|\vec{r} - \vec{r'}\right|^3} = \frac{q}{4\pi\epsilon_0} \frac{\vec{r}}{r^3} = \frac{q}{4\pi\epsilon_0} \frac{\hat{r}}{r^2}$$

Electric field produced by a point particle at the source point $x'\hat{x} + y'\hat{y} + z'\hat{z}$

$$\vec{E}(\vec{r}) = \frac{q}{4\pi\epsilon_0} \frac{\vec{r} - \vec{r'}}{\left|\vec{r} - \vec{r'}\right|^3}$$

$$\vec{r} = x\hat{x} + y\hat{y} + z\hat{z}$$

$$\vec{r'} = x'\hat{x} + y'\hat{y} + z'\hat{z}$$

$$\vec{r} - \vec{r'} = (x - x')\hat{x} + (y - y')\hat{y} + (z - z')\hat{z}$$

$$\left|\vec{r} - \vec{r'}\right| = \sqrt{(x - x')^2 + (y - y')^2 + (z - z')^2}$$

$$\vec{E}(\vec{r}) = \frac{q}{4\pi\epsilon_0} \frac{(x - x')\hat{x} + (y - y')\hat{y} + (z - z')\hat{z}}{[(x - x')^2 + (y - y')^2 + (z - z')^2]^{3/2}}$$

Electric field produced by multiple particles

- ▶ Point particle *i* has charge q_i , located at $\vec{r_i}$.
- ightharpoonup Field point is \vec{r} , where we want to know the electric field.

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^{n} \frac{q_i}{\nu_i^2} \hat{\boldsymbol{\lambda}}_i = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^{n} \frac{q_i}{\nu_i^3} \vec{\boldsymbol{\lambda}}_i = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^{n} \frac{q_i(\vec{r} - \vec{r_i'})}{\left| \vec{r} - \vec{r_i'} \right|^3}$$

A little bit of charge produces a little bit of field.

- ▶ A little bit of charge dq is located at $\vec{r'}$.
- ightharpoonup Field point is \vec{r} , where we want to know the electric field.

$$d\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \frac{\hat{\boldsymbol{z}}}{\imath^2} dq = \frac{1}{4\pi\epsilon_0} \frac{\vec{\boldsymbol{z}}}{\imath^3} dq = \frac{1}{4\pi\epsilon_0} \frac{\vec{r} - \vec{r'}}{\left|\vec{r} - \vec{r'}\right|^3} dq$$
$$\vec{E}(\vec{r}) = \int d\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\hat{\boldsymbol{z}}}{\imath^2} dq$$

Charge Distributions

Charge distribution	Dimensionality	Symbol	SI unit
Point charge	0	q, Q	С
Linear charge density	1	λ	C/m
Surface charge density	2	σ	C/m^2
Volume charge density	3	ho	C/m^3

Electric field produced by a line charge

- ► Charge is distributed along a curve C. The linear charge density at point $\vec{r'}$ is $\lambda(\vec{r'})$.
- ▶ A little bit of charge located at $\vec{r'}$ is $dq = \lambda(\vec{r'}) d\ell'$.
- ightharpoonup Field point is \vec{r} , where we want to know the electric field.

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int_C \frac{\lambda(\vec{r'})}{\imath^2} \hat{\imath} \, d\ell' = \frac{1}{4\pi\epsilon_0} \int_C \frac{\lambda(\vec{r'})}{\imath^3} \vec{\imath} \, d\ell'$$
$$= \frac{1}{4\pi\epsilon_0} \int_C \frac{\lambda(\vec{r'})(\vec{r} - \vec{r'})}{\left|\vec{r} - \vec{r'}\right|^3} \, d\ell'$$

► This is a vector line integral.

Electric field produced by a surface charge

- ► Charge is distributed across a surface S. The surface charge density at point $\vec{r'}$ is $\sigma(\vec{r'})$.
- ▶ A little bit of charge located at $\vec{r'}$ is $dq = \sigma(\vec{r'}) da'$.
- ightharpoonup Field point is \vec{r} , where we want to know the electric field.

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int_{S} \frac{\sigma(\vec{r'})}{n^2} \hat{\boldsymbol{\lambda}} da' = \frac{1}{4\pi\epsilon_0} \int_{S} \frac{\sigma(\vec{r'})}{n^3} \vec{\boldsymbol{\lambda}} da'$$
$$= \frac{1}{4\pi\epsilon_0} \int_{S} \frac{\sigma(\vec{r'})(\vec{r} - \vec{r'})}{\left|\vec{r} - \vec{r'}\right|^3} da'$$

▶ This is a vector surface integral.

Electric field produced by a volume charge

- ► Charge is distributed throughout a volume V. The volume charge density at point $\vec{r'}$ is $\rho(\vec{r'})$.
- ▶ A little bit of charge located at $\vec{r'}$ is $dq = \rho(\vec{r'}) d\tau'$.
- ightharpoonup Field point is \vec{r} , where we want to know the electric field.

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int_V \frac{\rho(\vec{r'})}{\nu^2} \hat{\boldsymbol{\lambda}} d\tau' = \frac{1}{4\pi\epsilon_0} \int_V \frac{\rho(\vec{r'})}{\nu^3} \vec{\boldsymbol{\lambda}} d\tau'$$
$$= \frac{1}{4\pi\epsilon_0} \int_V \frac{\rho(\vec{r'})(\vec{r} - \vec{r'})}{\left|\vec{r} - \vec{r'}\right|^3} d\tau'$$

► This is a vector volume integral.

Integrals needed to calculate electric field

notation	inputs		output
∫ _C f dℓ	scalar field	curve	scalar
$\int_{\mathcal{C}} \vec{F} d\ell$	vector field	curve	vector
$\int_C \vec{F} \cdot d\vec{\ell}$	vector field	curve	scalar
∫ _S f da	scalar field	surface	scalar
$\int_{\mathcal{S}} \vec{F} da$	vector field	surface	vector
$\int_{S} \vec{F} \cdot d\vec{a}$	vector field	surface	scalar
$\int_V f dv$	scalar field	volume	scalar
$\int_V \vec{F} dv$	vector field	volume	vector

▶ Integrals in red are the ones required to calculate electric field.