Electric Potential

Scott N. Walck

October 6, 2021

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Theorem

Let \vec{F} be a vector field. If

$$
\vec{\nabla}\times\vec{F}=0
$$

then there exists a scalar field f such that

 $\vec{F} = \vec{\nabla} f$.

 \triangleright A conservative vector field is always the gradient of some scalar field.

 \triangleright (Most vector fields are not the gradient of any scalar field.)

Electric Potential

Since the electric field is conservative

$$
\vec{\nabla}\times\vec{E}=0
$$

there must be a scalar field V such that

$$
\vec{E}=-\vec{\nabla}V.
$$

We call the scalar field V the electric potential.

- \triangleright Note the minus sign in the definition of electric potential.
- \blacktriangleright Electric field points in the direction of decreasing electric potential.

The electric field does not uniquely determine an electric potential.

 \triangleright Suppose c is a constant. like 7 volts. The electric potential V and the electric potential $V + c$ give the same electric field.

$$
\vec{E} = -\vec{\nabla} (V + c) = -\vec{\nabla} V = \vec{E}
$$

KORK EXTERNE PROVIDE

A second relationship between electric field and electric potential

Recall the fundamental theorem for gradients. Let C be a curve from \vec{a} to \vec{b} .

$$
\int_C \vec{\nabla} f \cdot d\vec{\ell} = f(\vec{b}) - f(\vec{a})
$$

Substituting $-V$ for f and rearranging, we get

$$
V(\vec{b})-V(\vec{a})=-\int_{\vec{a}}^{\vec{b}}\vec{E}\cdot d\vec{\ell}.
$$

KORKARYKERKER POLO

Finding electric potential from electric field

$$
V(\vec{b}) - V(\vec{a}) = -\int_{\vec{a}}^{\vec{b}} \vec{E} \cdot d\vec{\ell}
$$

If we let \vec{a} be a place where electric potential is zero, then

$$
V(\vec{r})=-\int_{\vec{a}}^{\vec{r}}\vec{E}\cdot d\vec{\ell}.
$$

KO K K Ø K K E K K E K V K K K K K K K K K

Electric potential produced by a point particle

- \blacktriangleright Point particle has charge q, located at $\vec{r'}$.
- \triangleright Field point is \vec{r} , where we want to know the electric field and the electric potential.

$$
V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \frac{q}{\lambda} = \frac{1}{4\pi\epsilon_0} \frac{q}{\left|\vec{r} - \vec{r'}\right|}
$$

Electric potential produced by multiple particles

- \blacktriangleright Point particle *i* has charge q_i , located at $\vec{r_i}$.
- \triangleright Field point is \vec{r} , where we want to know the electric field and the electric potential.

$$
V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^{n} \frac{q_i}{\lambda_i} = \frac{1}{4\pi\epsilon_0} \sum_{i=1}^{n} \frac{q_i}{|\vec{r} - \vec{r}_i|}
$$

KO K K Ø K K E K K E K V K K K K K K K K K

A little bit of charge produces a little bit of electric potential.

- A little bit of charge dq is located at $\vec{r'}$.
- \triangleright Field point is \vec{r} , where we want to know the electric field and the electric potential.

$$
dV(\vec{r}) = \frac{1}{4\pi\epsilon_0} \frac{dq}{\lambda} = \frac{1}{4\pi\epsilon_0} \frac{dq}{|\vec{r} - \vec{r}'|}
$$

$$
V(\vec{r}) = \int dV(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{dq}{\lambda}
$$

Electric potential produced by a line charge

- \triangleright Charge is distributed along a curve C. The linear charge density at point $\vec{r'}$ is $\lambda(\vec{r'})$.
- A little bit of charge located at $\vec{r'}$ is $dq = \lambda(\vec{r'}) d\ell'.$
- \blacktriangleright Field point is \vec{r} , where we want to know the electric field.

$$
V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int_C \frac{\lambda(\vec{r'})}{2} d\ell' = \frac{1}{4\pi\epsilon_0} \int_C \frac{\lambda(\vec{r'})}{|\vec{r} - \vec{r'}|} d\ell'
$$

KORKARYKERKER POLO

 \blacktriangleright This is a scalar line integral.

Electric potential produced by a surface charge

- \triangleright Charge is distributed across a surface S. The surface charge density at point $\vec{r'}$ is $\sigma(\vec{r'})$.
- A little bit of charge located at $\vec{r'}$ is $dq = \sigma(\vec{r'})$ da'.
- \blacktriangleright Field point is \vec{r} , where we want to know the electric field.

$$
V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int_S \frac{\sigma(\vec{r'})}{\lambda} d\vec{a'}
$$

$$
= \frac{1}{4\pi\epsilon_0} \int_S \frac{\sigma(\vec{r'})}{|\vec{r} - \vec{r'}|} d\vec{a'}
$$

KELK KØLK VELKEN EL 1990

 \blacktriangleright This is a scalar surface integral.

Electric potential produced by a volume charge

- \triangleright Charge is distributed throughout a volume V. The volume charge density at point $\vec{r'}$ is $\rho(\vec{r'})$.
- A little bit of charge located at $\vec{r'}$ is $dq = \rho(\vec{r'}) d\tau'.$
- \blacktriangleright Field point is \vec{r} , where we want to know the electric field.

$$
V(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int_V \frac{\rho(\vec{r'})}{\nu} d\tau' = \frac{1}{4\pi\epsilon_0} \int_V \frac{\rho(\vec{r'})}{|\vec{r} - \vec{r'}|} d\tau'
$$

KELK KØLK VELKEN EL 1990

 \blacktriangleright This is a scalar volume integral.

Integrals needed to calculate electric potential from charge

