Electric Field

Scott N. Walck

October 2, 2024

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Modern Electromagnetic Theory

The Maxwell Equations

$$\vec{\nabla} \times \vec{B} - \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t} = \mu_0 \vec{J} \qquad \qquad \vec{\nabla} \cdot \vec{E} = \frac{1}{\epsilon_0} \rho$$
$$\vec{\nabla} \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0 \qquad \qquad \vec{\nabla} \cdot \vec{B} = 0$$

The Lorentz Force Law

$$ec{F} = q(ec{E} + ec{v} imes ec{B})$$

(ロ)、(型)、(E)、(E)、 E) の(()

The Maxwell equations decouple in the static case.

$$\vec{\nabla} \times \vec{B} - \mu_0 \epsilon_0 \frac{\partial \vec{E}}{\partial t} = \mu_0 \vec{J} \qquad \qquad \vec{\nabla} \cdot \vec{E} = \frac{1}{\epsilon_0} \rho$$
$$\vec{\nabla} \times \vec{E} + \frac{\partial \vec{B}}{\partial t} = 0 \qquad \qquad \vec{\nabla} \cdot \vec{B} = 0$$

By "the static case", I mean nothing changes in time.

$$\vec{\nabla} \cdot \vec{E} = \frac{1}{\epsilon_0} \rho \qquad \qquad \vec{\nabla} \cdot \vec{B} = 0$$
$$\vec{\nabla} \times \vec{E} = 0 \qquad \qquad \vec{\nabla} \times \vec{B} = \mu_0 \vec{J}$$

Coulomb's law is the solution to Gauss's law and Kirchhoff's law.

lf

then

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int_V \frac{\vec{r} - \vec{r}'}{|\vec{r} - \vec{r}'|^3} \rho(\vec{r}') v'.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Electric field produced by a point particle

- Point particle has charge q, located at $\vec{r'}$.
- Field point is \vec{r} , where we want to know the electric field.

$$\vec{E}(\vec{r}) = \frac{q}{4\pi\epsilon_0}\frac{\hat{\boldsymbol{\imath}}}{\boldsymbol{\imath}^2} = \frac{q}{4\pi\epsilon_0}\frac{\vec{\boldsymbol{\imath}}}{\boldsymbol{\imath}^3} = \frac{q}{4\pi\epsilon_0}\frac{\vec{r}-\vec{r'}}{\left|\vec{r}-\vec{r'}\right|^3}$$

Electric field produced by multiple particles

Point particle *i* has charge *q_i*, located at *r_iⁱ*.
 Field point is *r*, where we want to know the electric field.
 E(*r*) = 1/(4πε₀) Σ_{i=1}ⁿ q_i/∂_i² λ_i = 1/(4πε₀) Σ_{i=1}ⁿ q_i/∂_i³ *k_i* = 1/(4πε₀) Σ_{i=1}ⁿ q_i(*r* - *r_iⁱ*)

A little bit of charge produces a little bit of field.

• A little bit of charge dq is located at $\vec{r'}$.

Field point is \vec{r} , where we want to know the electric field.

$$d\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \frac{\hat{\boldsymbol{\imath}}}{\boldsymbol{\imath}^2} dq = \frac{1}{4\pi\epsilon_0} \frac{\vec{\boldsymbol{\imath}}}{\boldsymbol{\imath}^3} dq = \frac{1}{4\pi\epsilon_0} \frac{\vec{r} - \vec{r'}}{\left|\vec{r} - \vec{r'}\right|^3} dq$$
$$\vec{E}(\vec{r}) = \int d\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int \frac{\hat{\boldsymbol{\imath}}}{\boldsymbol{\imath}^2} dq$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Charge Distributions

Charge distribution	Dimensionality	Symbol	SI unit
Point charge	0	q, Q	С
Linear charge density	1	λ	C/m
Surface charge density	2	σ	C/m^2
Volume charge density	3	ρ	C/m^3

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Electric field produced by a line charge

- Charge is distributed along a curve C. The linear charge density at point $\vec{r'}$ is $\lambda(\vec{r'})$.
- A little bit of charge located at $\vec{r'}$ is $dq = \lambda(\vec{r'}) d\ell'$.
- Field point is \vec{r} , where we want to know the electric field.

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int_C \frac{\lambda(\vec{r'})}{\nu^2} \hat{\boldsymbol{\lambda}} d\ell' = \frac{1}{4\pi\epsilon_0} \int_C \frac{\lambda(\vec{r'})}{\nu^3} \vec{\boldsymbol{\lambda}} d\ell'$$
$$= \frac{1}{4\pi\epsilon_0} \int_C \frac{\lambda(\vec{r'})(\vec{r} - \vec{r'})}{\left|\vec{r} - \vec{r'}\right|^3} d\ell'$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

This is a vector line integral.

Electric field produced by a surface charge

- Charge is distributed across a surface S. The surface charge density at point $\vec{r'}$ is $\sigma(\vec{r'})$.
- A little bit of charge located at $\vec{r'}$ is $dq = \sigma(\vec{r'}) da'$.
- Field point is \vec{r} , where we want to know the electric field.

$$\vec{E}(\vec{r}) = \frac{1}{4\pi\epsilon_0} \int_S \frac{\sigma(\vec{r'})}{\nu^2} \hat{\boldsymbol{\lambda}} d\boldsymbol{a'} = \frac{1}{4\pi\epsilon_0} \int_S \frac{\sigma(\vec{r'})}{\nu^3} \vec{\boldsymbol{\lambda}} d\boldsymbol{a'}$$
$$= \frac{1}{4\pi\epsilon_0} \int_S \frac{\sigma(\vec{r'})(\vec{r} - \vec{r'})}{\left|\vec{r} - \vec{r'}\right|^3} d\boldsymbol{a'}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

This is a vector surface integral.

Electric field produced by a volume charge

- Charge is distributed throughout a volume V. The volume charge density at point $\vec{r'}$ is $\rho(\vec{r'})$.
- A little bit of charge located at $\vec{r'}$ is $dq = \rho(\vec{r'}) d\tau'$.
- Field point is \vec{r} , where we want to know the electric field.

$$egin{aligned} ec{E}(ec{r}) &= rac{1}{4\pi\epsilon_0} \int_V rac{
ho(ec{r'})}{2^2} \hat{oldsymbol{\imath}} \, d au' &= rac{1}{4\pi\epsilon_0} \int_V rac{
ho(ec{r'})}{2^3} ec{oldsymbol{\imath}} \, d au' \ &= rac{1}{4\pi\epsilon_0} \int_V rac{
ho(ec{r'})(ec{r}-ec{r'})}{\left|ec{r}-ec{r'}
ight|^3} \, d au' \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

This is a vector volume integral.

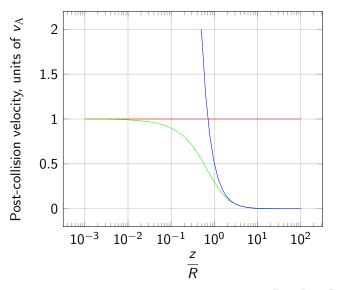
Integral needed to calculate electric field

notation	inputs		output	In 1.3.1?
$\int_C f d\ell$	scalar field	curve	scalar	no
$\int_C \vec{F} d\ell$	vector field	curve	vector	no
$\int_C \vec{F} \cdot d\vec{\ell}$	vector field	curve	scalar	yes
∫ _S f da	scalar field	surface	scalar	no
∫ _S F da	vector field	surface	vector	no
$\int_{S} \vec{F} \cdot d\vec{a}$	vector field	surface	scalar	yes
∫ _V f dv	scalar field	volume	scalar	yes
$\int_V \vec{F} dv$	vector field	volume	vector	yes

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Electric field produced by surface charge

Elastic Collision with Stationary Target



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Electric field produced by surface charge

Electric field produced by a flat disk

