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Ampere’s Law

~∇× ~B = µ0~J

I The curl of magnetic field at a point in space is proportional
to the current density at that point.

I Where current points in the direction of your right thumb,
magnetic field points in the direction of your bent right
fingers.

I The equation above is called the differential form of Ampere’s
law.



Deriving the integral form of Ampere’s Law

I Start with the differential form of Ampere’s law.

~∇× ~B = µ0~J

I Pick any oriented surface S. Do a flux integral of both sides
of Ampere’s law using this surface S.∫

S
(~∇× ~B) · d~a = µ0

∫
S

~J · d~a

I Use Stokes’ theorem to rewrite the left side. Realize that the
integral on the right side is the current flowing through the
surface. ∫

∂S

~B · d~̀= µ0Ienc

I The term on the left is the magnetic circulation around the
boundary of S.



Integral form of Ampere’s Law

∫
C

~B · d~̀= µ0Ienc

I C is any closed curve or loop.

I Ienc is the current flowing through C.

I The magnetic circulation around a closed loop C is
proportional to the current enclosed by the loop.

I Ampere’s law is not a recipe for finding anything.

I It is a claim that magnetic field and current are related.

I Current gives rise to magnetic field.

I If a current distribution has high symmetry, we can use the
integral form of Ampere’s law to find the magnetic field
produced by the current distribution.



Using Ampere’s law to find the magnetic field when the
current distribution has cylindrical symmetry

I Any rotation about the symmetry axis leaves the current
distribution unchanged, and hence must leave the magnetic
field unchanged.

I Any translation parallel to the symmetry axis leaves the
current distribution unchanged, and hence must leave the
magnetic field unchanged.

I Cylindrical symmetry has two cases, one for current
distributions that are like a long straight wire, and one for
distributions that are like a solenoid.



Cylindrical Symmetry Case 1

I ~J depends only on s, not on φ or z, and ~J points in the ẑ
direction.

~J = J(s)ẑ

I The magnetic field must point in the φ̂ direction: ~B = B(s)φ̂.

I The azimuthal component B(s) of the magnetic field can
depend only on s, not on φ or z.

I Choose a circle of radius s as your Amperian loop C. Notice
that ∫

C

~B · d~̀= B(s)2πs.



Cylindrical Symmetry Case 2

I ~J points in the φ̂ direction; the magnitude of ~J depends only
on s, not on φ or z.

~J = J(s)φ̂

I The magnetic field must point in the ẑ direction: ~B = B(s)ẑ.

I The ẑ component B(s) of the magnetic field can depend only
on s, not on φ or z.

I Choose a rectangle as your Amperian loop C. The sides
parallel to the ẑ direction have length L. The sides parallel to
the ŝ direction extend from s1 to s2. Notice that∫

C

~B · d~̀= B(s2)L−B(s1)L.



Using Ampere’s law to find the magnetic field when the
current distribution has planar symmetry

I With planar symmetry, ~J points in the x̂ direction; the
magnitude of ~J depends only on z, not on x or y.

~J = J(z)x̂

I Any translation in the xy plane leaves the current distribution
unchanged, and hence must leave the magnetic field
unchanged.

I The magnetic field must point in the ŷ direction: ~B = B(z)ŷ.

I The ŷ component B(z) of the magnetic field can depend only
on z, not on x or y.

I Choose a rectangle as your Amperian loop C. The sides
parallel to the ŷ direction have length L. The sides parallel to
the ẑ direction extend from z1 to z2. Notice that∫

C

~B · d~̀= B(z1)L−B(z2)L.


