Coordinate Systems

Scott N. Walck

September 2, 2020

A coordinate system turns a vector into numbers.

- ► A vector is never negative.
- ▶ Components of a vector can be positive, zero, or negative.

A different coordinate system turns the same vector into different numbers.

$$F_{\rm x} = -(30 \, {\rm N}) \sin 20^{\circ}$$

$$F_{V} = -(30 \text{ N}) \cos 20^{\circ}$$

Components depend on coordinate system.

What are the components of this velocity vector?

 $\vec{v}=20~\text{m/s}~\text{@}~30^\circ$ west of north

To find components, we need a coordinate system.

Let's use the standard coordinate system.

$$v_x = -(20 \text{ m/s}) \sin 30^\circ = -10 \text{ m/s}$$

 $v_y = (20 \text{ m/s}) \cos 30^\circ = 17.32 \text{ m/s}$

- Vector itself is not negative.
- One component is positive; one component is negative.

Find the acceleration in magnitude-angle form.

$$a_x = 5 \text{ m/s}^2$$
$$a_y = -10 \text{ m/s}^2$$

Use Pythagorean Theorem and some trig

$$a = \sqrt{a_x^2 + a_y^2} = \sqrt{(5 \text{ m/s}^2)^2 + (-10 \text{ m/s}^2)^2} = 11.18 \text{ m/s}^2$$

$$\tan \theta = \frac{10 \text{ m/s}^2}{5 \text{ m/s}^2} = 2$$

Add these two vectors

Force	Magnitude	Angle	
\vec{F}_1	22.36 N	26.6° W of N	
\vec{F}_2	50.00 N	53.1° N of E	
F _T	?	?	

▶ To add vectors, you can add the components.

Find components of each vector.

$$F_{1x} = -(22.36 \text{ N}) \sin 26.6^{\circ}$$

= -10 N
 $F_{1y} = (22.36 \text{ N}) \cos 26.6^{\circ}$
= 20 N

$$F_{2x} = (50.00 \text{ N}) \cos 53.1^{\circ}$$

= 30 N
 $F_{2y} = (50.00 \text{ N}) \sin 53.1^{\circ}$
= 40 N

Why does adding the components work?

To add vectors, you can add the components.

- Add the x components to get the total x component.
- Add the *y* components to get the total *y* component.
- ▶ Never add an x to a y.
- ► Convert back to magnitude/angle form if you need/want to.

Force	Magnitude	Angle	F_{x} (N)	$F_{y}(N)$
\vec{F}_1	22.36 N	26.6° W of N	-10	20
\vec{F}_2	50.00 N	53.1° N of E	30	40
\vec{F}_T	63.25 N	71.6° N of E	20	60