
Modern Physics

Scott N. Walck

April 10, 2024

(ロ)、(型)、(E)、(E)、 E) の(()

Two Pillars of 20th Century Physics

There are two types of relativity theory.

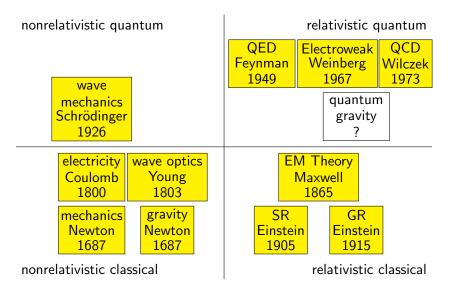
Special Relativity

- published in 1905 by Albert Einstein
- Time is not universal.
- Each observer has a clock. Different observers have clocks that run at different rates.

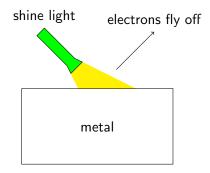
You can only compare clocks that are next to each other.

- Three-dimensional space and one-dimensional time belong together in a four-dimensional spacetime.
- General Relativity
 - published in 1915 by Albert Einstein
 - a theory of gravity
 - Gravity is not a force.
 - Our 4-dimensional spacetime in not flat. It is curved.
 - Mass causes spacetime to curve.
 - Objects experience gravity by moving in a "straight line" through the curved spacetime.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

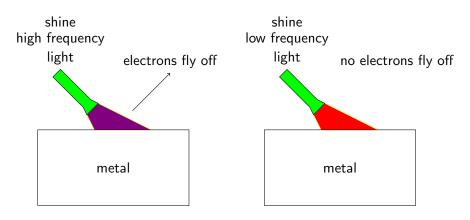

Key events in the development of Quantum Theory

- 1900 Planck proposes quanta of light
- 1905 Einstein explains photoelectric effect
- 1913 Bohr suggests special radii
- 1921 Stern and Gerlach demonstrate spatial quantization


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- 1923 Compton sees frequency shift in scattered X-rays
- 1924 de Broglie suggests matter waves
- 1925 Heisenberg presents matrix mechanics
- 1926 Schrödinger presents wave mechanics
- 1927 Heisenberg presents uncertainty principle

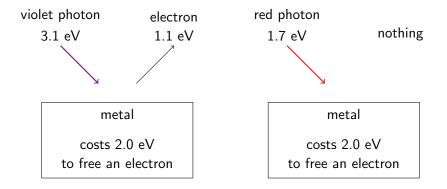
Theories in Physics


The photoelectric effect

 Light provides the energy needed to free electrons from the metal.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

The photoelectric effect

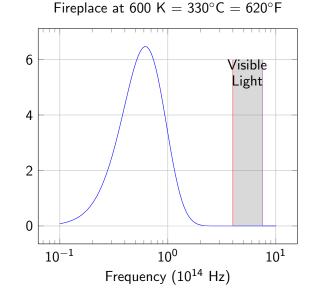

violet has high frequency

even if light is very bright

人口 医水黄 医水黄 医水黄素 化甘油

The photoelectric effect: Einstein's idea

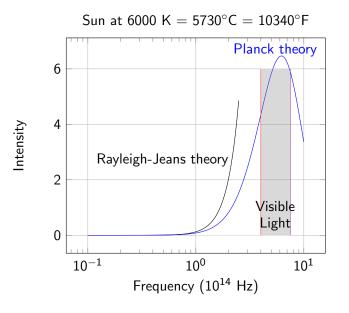
- One photon must free one electron.
- Energy of one photon is E = hf.


▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

How to convert among photon wavelength, frequency, and energy

Quantity	Symbol	Unit				
Wavelength	λ	m, nm				
Frequency	f	Hz, THz				
Energy	Ε	J, eV				
	$f = \frac{c}{\lambda}$					
	E = hf					
$c=3 imes 10^8~{ m m/s}$						
$h = 6.626 \times 10^{-34}$	J s = 4.13	$36 imes 10^{-15} \ \mathrm{eV} \ \mathrm{s}^{-15}$				

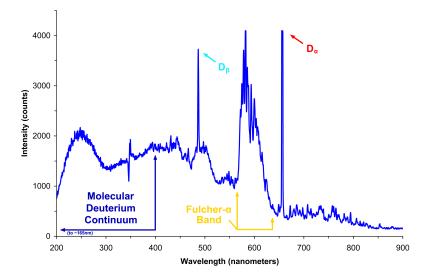
◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◆○◆


Hot things radiate

Intensity

・ロト・四ト・モート ヨー うへの

The ultraviolet catastrophe

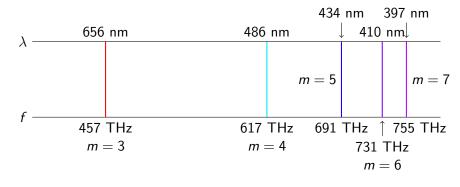

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣��

Physicists love hydrogen.

Group	•	1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period	•																			Noble
																				gases
																	nts nea			<u> </u>
	1	1													the da	ished s	taircas	se are		2
Nonmetals		н													somet	times o	alled n	netallo	ids	He
Metals	2	3	4												5	6	7	8	9	10
	2	Li	Be												в	С	Ν	0	F	Ne
		11	12					Tr	ansitic	on meta	als				13	14	15	16	17	18
	3	Na	Mg				(somet	imes e	xcl. gr	oup 12)			AI	Si	P	s	ci	Ar
		19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
	4	K	Ca		Sc	Ti	23 V	Z4 Cr	25 Mn	Fe	Co	20 Ni	29 Cu	Zn	Ga	Ge	As	Se Se	Br	Kr
	5	37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
		Rb	Sr		Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
	6	55	56	La to Yb	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
	Ŭ	Cs	Ba	Latono	Lu	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
	7	87	88	A	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
	'	Fr	Ra	Ac to No	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
		s-bl		f-block					d-b	lock						p-t	olock (excl. F	le)	
		(incl.	He)																	
					57	58	59	60	61	62	63	64	65	66	67	68	69	70		
			La	anthanides	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb		
					89	90	91	92	93	94	95	96	97	98	99	100	101	102		
				Actinides	Ac	Th	Pa	Ű	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ● ●

Balmer: Hydrogen spectrum has sharp lines

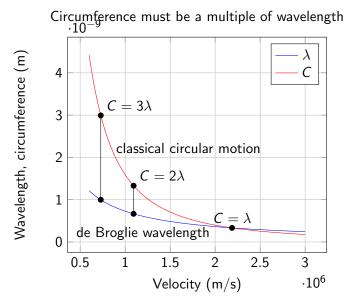


(日)

э

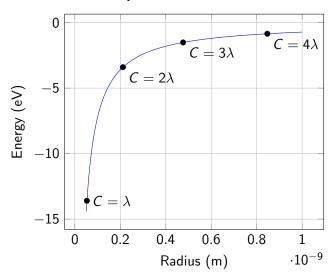
unlike a blackbody

Balmer (1885) looked at 5 lines from hydrogen



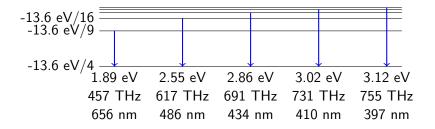
He found a pattern:

$$\lambda = \frac{365 \text{ nm}}{1 - \frac{4}{m^2}}$$
 $f = 3289 \text{ THz}\left(\frac{1}{2^2} - \frac{1}{m^2}\right)$


▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

Bohr atom (1913)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで


Bohr model produces hydrogen energy levels

Only certain radii are allowed

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Hydrogen energy levels

Differences in energy levels match the Balmer frequencies

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

-13.6 eV

Mass is a form of energy.

In 1905, Einstein wrote the following equation.

$$E = mc^2$$

- What does it mean? It means that a thing has energy, simply by virtue of having mass. This energy is called *rest energy*.
- An object with mass *m* has rest energy equal to mc^2 .
- Rest energy can be transformed into other types of energy, resulting in a loss of mass.

An MeV/c^2 is a unit of mass.

$$\begin{split} 1 \ \mathrm{MeV}/c^2 &= \frac{1 \ \mathrm{MeV}}{c^2} = \frac{1 \ \mathrm{MeV}}{(3 \times 10^8 \ \mathrm{m/s})^2} \times \frac{10^6 \ \mathrm{eV}}{1 \ \mathrm{MeV}} \\ &= \frac{10^6 \ \mathrm{eV}}{(3 \times 10^8 \ \mathrm{m/s})^2} \times \frac{1.602 \times 10^{-19} \ \mathrm{kg} \ \mathrm{m}^2/\mathrm{s}^2}{1 \ \mathrm{eV}} \\ &= \frac{1.602 \times 10^{-13} \ \mathrm{kg} \ \mathrm{m}^2/\mathrm{s}^2}{9 \times 10^{16} \ \mathrm{m}^2/\mathrm{s}^2} \\ &= 1.78 \times 10^{-30} \ \mathrm{kg} \end{split}$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

The mass of a hydrogen atom is slightly less than the sum of the masses of a proton and an electron.

proton	938.2720133 MeV/c ²
electron	$0.5109989 \text{ MeV}/c^2$
total	938.7830122 MeV/c ²

proton + electron	938.7830122 MeV/c ²
hydrogen	938.7829986 MeV/c ²
difference	0.0000136 MeV/c ²

0.0000136 $\mathrm{MeV}/c^2 = 13.6 \ \mathrm{eV}/c^2$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Some particles are stable and some are not

- Stable particles
 - Proton
 - Electron
 - Helium atom
 - Many atoms

Unstable particles
 Neutron
 Radium-226
 Uranium-232
 Carbon-14

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Unstable particles spontaneously decay.

There are three main mechanisms by which nuclei decay.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Alpha decay (α decay)
 Emission of a helium-4 nucleus
 Beta decay (β decay)
 Emission of an electron
 Gamma decay (γ decay)
 Emission of a photon

In alpha decay, a nucleus splits into a helium-4 nucleus and something else.

- $\blacktriangleright \ \ \frac{^{226}\text{Ra}}{^{88}}\text{Ra} \ \rightarrow \ \frac{^{222}\text{Ra}}{^{86}}\text{Rn} + \ \frac{^{4}\text{He}}{^{2}}\text{He}$
- ▶ $^{238}_{92}$ U $\rightarrow ^{234}_{90}$ Th + $^{4}_{2}$ He
- $\blacktriangleright \ ^{A}_{Z}X \rightarrow {}^{A-4}_{Z-2}Y + {}^{4}_{2}He$
- An alpha particle is a ${}_{2}^{4}$ He nucleus.

Beta decay involves an electron or related particle.

- β^- decay involves emission of an electron.
- β^+ decay involves emission of a positron.
- Electron capture involves absorption of an electron.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

In β^- decay, a neutron becomes a proton, an electron, and an antineutrino.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- $\blacktriangleright n \rightarrow p + e^- + \overline{\nu}$
- $\blacktriangleright {}^{14}_{6}\mathrm{C} \rightarrow {}^{14}_{7}\mathrm{N} + \mathrm{e}^- + \overline{\nu}$
- $\blacktriangleright {}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}Y + e^{-} + \overline{\nu}$
- Charge is conserved.
- The number of protons is not conserved.
- A beta particle is an electron.

 β^+ decay involves emission of a positron.

$$\blacktriangleright {}^{19}_{10}\mathrm{Ne} \rightarrow {}^{19}_{9}\mathrm{F} + \mathrm{e}^+ + \nu$$

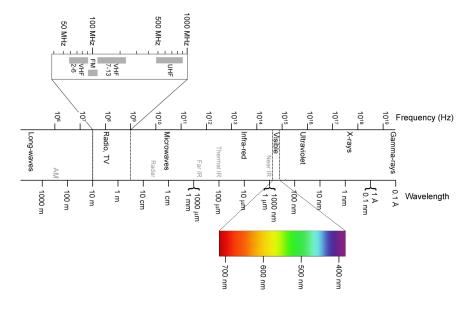
- ► ${}^{18}_{9}\text{F} \rightarrow {}^{18}_{8}\text{O} + e^+ + \nu$ (PET scan)
- $\blacktriangleright {}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}Y + e^{+} + \nu$
- ▶ Behind the scenes, $p \rightarrow n + e^+ + \nu$, although this reaction itself never occurs.

- Charge is conserved.
- The number of protons is not conserved.

Electron capture involves absorption of an electron.

- $\blacktriangleright ~^{7}_{4}\mathrm{Be} + \mathrm{e}^{-} \rightarrow ~^{7}_{3}\mathrm{Li} + \nu$
- $\blacktriangleright {}^{18}_{9}\mathrm{F} + \mathrm{e}^- \rightarrow {}^{18}_{8}\mathrm{O} + \nu$
- $\blacktriangleright {}^{A}_{Z}X + e^{-} \rightarrow {}^{A}_{Z-1}Y + \nu$
- Behind the scenes, $p + e^- \rightarrow n + \nu$.
- Charge is conserved.
- The number of protons is not conserved.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●


Gamma decay involves the emission of a photon.

- $\blacktriangleright \ {}^{12}_{6}\mathrm{C}^* \ \rightarrow {}^{12}_{6}\mathrm{C} + \gamma$
- $\blacktriangleright \ ^{\mathbf{A}}_{\mathbf{Z}}\mathbf{X}^* \rightarrow ^{\mathbf{A}}_{\mathbf{Z}}\mathbf{X} + \gamma$
- Charge is conserved.
- The number of protons is conserved.
- Similar to the emission of a photon from an excited state of hydrogen, except that in hydrogen, an excited *electronic* state makes a transition to a lower energy level, while here an excited *nuclear* state makes a transition to a lower energy level.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

A gamma particle is a photon.

Gamma rays are the highest energy photons.

Isotopes of Carbon

lsotope	Abundance	Half-life
⁻¹¹ C	0	20.334 min
¹² C	99%	stable
¹³ C	1%	stable
¹⁴ C	$1.3 imes10^{-12}$	5730 years

(ロ)、(型)、(E)、(E)、(E)、(O)()

Earth's atmosphere contains carbon-14.

We want to apply ideas of nuclear decay to the problem of figuring out how old something is.

$$N = N_0 e^{-\lambda t}$$

Carbon-14 is unstable and decays, but it is also produced by the following reaction.

$$n + {}^{14}_{7}N \rightarrow {}^{14}_{6}C + p$$

The fraction of ¹⁴C in Earth's atmosphere has remained roughly constant over thousands of years.

$$\frac{N(^{14}\text{C})}{N(^{12}\text{C})} = 1.3 \times 10^{-12}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Carbon Dating

- Every living thing maintains the ratio of 1.3 × 10⁻¹² carbon-14 atoms for each carbon-12 atom by interacting with Earth's atmosphere (by breathing, inspiration of CO₂, etc.)
- When a living thing dies, this interaction stops, no new ¹⁴C comes in, and the existing ¹⁴C decays.
- ► By knowing the initial fraction of carbon-14 is 1.3 × 10⁻¹² and measuring the present fraction, we can tell how long it has been since something died.

To find the time since something has been alive:

$$N = N_0 e^{-\lambda t}$$
$$\frac{N}{N_0} = e^{-\lambda t}$$
$$\ln\left(\frac{N}{N_0}\right) = -\lambda t$$
$$t = -\frac{\ln\left(\frac{N}{N_0}\right)}{\lambda}$$

◆□ ▶ < 個 ▶ < 目 ▶ < 目 ▶ < 目 ● ○ ○ ○</p>