Universal Gravity

Scott N. Walck

September 30, 2020

Four theories of gravity

- 1. Gravity accelerates objects downward at 9.8 m/s²
- 2. Gravity is a force near Earth's surface, $F_{\rm G}=mg$
- 3. Gravity is a force between any two objects, $F_{\rm G} = G \frac{m_1 m_2}{r^2}$
- 4. Gravity is the curvature of spacetime (Einstein, 1915)

List of forces so far

Force	symbol	direction	magnitude
somebody pushing	$F_{ m P}$		
gravity (weight)	$F_{ m G}$	downward	$F_{ m G}=mg$
universal gravity	$F_{ m G}$	toward other object	$F_{\rm G} = G \frac{m_1 m_2}{r^2}$
normal force	$F_{ m N}$	\perp to surface	,
tension	\mathcal{F}_{T}	along rope	
air resistance		opposite the velocity	
kinetic friction	$F_{ m fr}$	opposite the velocity	$F_{ m fr}=\mu_{ m k}F_{ m N}$
static friction	$F_{ m fr}$	to surface	$F_{\mathrm{fr}} \leq \mu_{\mathrm{s}} F_{\mathrm{N}}$

How is G related to g?

$$g = \frac{GM_{
m E}}{R_{
m E}^2}$$

Exercise: Calculate the acceleration of gravity on the Moon, g_{Moon} .

Satellite motion

Bring together 3 ideas:

- Newton's second law, F = ma
- ▶ Universal gravity, $F_{\rm G} = G \frac{m_1 m_2}{r^2}$
- ▶ Uniform circular motion, $a = \frac{v^2}{r}$

For a satellite of mass m attracted by another object with mass M,

$$G\frac{Mm}{r^2} = m\frac{v^2}{r}$$

- ▶ On the left, *r* is the distance between the centers of the two objects.
- On the right, r is the radius of circular motion.
- ▶ If the satellite is small, these two rs are the same.

Small satellite

$$G\frac{Mm}{r^2} = m\frac{v^2}{r}$$

Relation between satellite speed and radius:

$$GM = v^2 r$$

Using $v = 2\pi r/T$, get a relation between radius and period:

$$GMT^2 = 4\pi^2 r^3$$

Exercises

- 1. Calculate the period of a satellite in low Earth orbit.
- 2. Calculate the period of the Moon.