
Uniform Circular Motion

Scott N. Walck

October 14, 2024

Uniform circular motion

$$v = \frac{r\Delta\theta}{\Delta t}$$
$$a = \frac{\Delta v}{\Delta t} = \frac{v\Delta\theta}{\Delta t} = \frac{v^2}{r}$$

Uniform circular motion

Uniform = constant speed

If you know that an object is in uniform circular motion, then you know two things:

- 1. The direction of its acceleration is *inward*.
- 2. The magnitude of its acceleration is $\frac{v^2}{r}$.

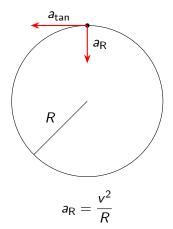
(Recall that velocity and acceleration are perpendicular when an object changes direction at constant speed.)

Period and frequency for circular motion

- ightharpoonup r = radius of circle
- ightharpoonup T = period = time for one revolution
- ightharpoonup f = frequency = number of revolutions per second

$$f=rac{1}{T}$$

 $\triangleright v = \text{speed of object in circular motion}$


$$v = \frac{2\pi r}{T}$$

Speed, direction, and acceleration

	Speed constant	Speed changing
Direction constant	a = 0	$a \neq 0$
Direction changing	$a \neq 0$	$a \neq 0$

	Speed constant		Speed ch	anging
Direction constant	$a_{ an}=0$	$a_{ m R}=0$	$a_{ an} = rac{\Delta v}{\Delta t}$	$a_{ m R}=0$
Direction changing	$a_{tan}=0$	$a_{\rm R} = \frac{v^2}{r}$	$a_{ an} = rac{\Delta v}{\Delta t}$	$a_{\rm R} = \frac{v^2}{r}$

Nonuniform Circular Motion

▶ In nonuniform circular motion, the acceleration is not necessarily inward, but the inward component of acceleration is still v²/R.

Comparison of Uniform and Nonuniform Circular Motion

	Uniform circular motion	
a_R	v^2/R	v^2/R
a _{tan}	zero	not zero
direction of a	inward	not exactly inward