Temperature, Specific Heat, and Latent Heat

Scott N. Walck

August 13, 2024

(ロ)、(型)、(E)、(E)、 E) の(()

Temperature Scales

- - 90°C ------ 194.0°F
 - 80°C ------ 176.0°F

 - 40°C ------ 104.0°F
 - 30°C ------ 86.0°F
 - 20°C ------ 68.0°F
 - 10°C ------ 50.0°F
 - 0°C ------ 32.0°F

Thermal Equilibrium

- Two substances in contact will reach the same temperature.
- But temperature is not something one substance gives to the other.
- Substances don't give or receive temperature. They give or receive *energy*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Specific Heat relates temperature and thermal energy

1 kg of each substance

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Specific Heat

- A hot substance has more thermal energy than an otherwise identical cold substance.
- How are thermal energy and temperature related?

 $\Delta E_{\rm th} = mc\Delta T$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- $\Delta E_{\rm th} =$ change in thermal energy of the substance
- m is the mass of the substance
- c is the specific heat of the substance (J/kg°C)
- $\Delta T =$ change in temperature of the substance

Specific Heats of materials

Substance	Specific Heat $(J/kg \cdot C)$
Aluminum	900
Copper	390
Iron or steel	450
Lead	130
Silver	230
Water	
lce $(-5^{\circ}C)$	2100
Liquid (15°C)	4186
Steam $(110^{\circ}C)$	2010

Specific heat problems: two methods

Method 1: Heat Gained = Heat Lost

$$m_1c_1 |\Delta T_1| + m_2c_2 |\Delta T_2| = m_3c_3 |\Delta T_3|$$

No negative numbers
Sometimes |∆T| = T_f − T_i and sometimes |∆T| = T_i − T_f.
Method 2: ∆E_{th} = 0

$$m_1 c_1 \Delta T_1 + m_2 c_2 \Delta T_2 + m_3 c_3 \Delta T_3 = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Negative numbers Always ∆T = T_f − T_i.

Latent heats can be tricky.

Latent Heat of Fusion

▶ 월 \

<ロト <回ト < 注ト < 注ト

900

Latent Heat

- It takes energy to change phase.
- The energy required to go from a solid to a liquid is called the latent heat of fusion.
- The energy required to go from a liquid to a gas is called the latent heat of vaporization.
- During the phase change, energy is added, but no increase in temperature takes place.

$$\Delta E_{\rm th} = mL$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- $\Delta E_{\rm th} =$ change in thermal energy of the substance
- \blacktriangleright *m* is the mass that changes phase
- L is the latent heat of the substance (J/kg)

Latent Heats of materials

	Melting	Heat of	Boiling	Heat of
Substance	Point	Fusion	Point	Vaporization
	(°C)	(J/kg)	(°C)	(J/kg)
Water	0	333,000	100	2.26×10^6
Lead	327	25,000	1750	870,000

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Latent Heat of Vaporization

1 kg of water

<ロト <回ト < 注ト < 注ト æ

Temperature-Energy relationship for 1 kg of water

1 kg of water

(日) э

Conceptual Latent Heat Question

A mass M_I of ice at a certain initial temperature T_I is combined with a mass M_W of water at a higher initial temperature of T_W . The two are allowed to come to thermal equilibrium without gaining or losing thermal energy to the surroundings. Consider the following energies that would be needed or released *if* the processes described were to occur.

Energy required to heat mass M_I of ice from T_I to 0° C	172,000 J
Energy required to melt mass M_I of ice at $0^{\circ}C$	28,000,000 J
Energy released in freezing mass M_W of water at $0^{\circ}C$	32,000,000 J
Energy released in cooling mass M_W of water from T_W to 0° C	8,420,000 J

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Will the final state be all water, all ice, or a mixture of ice and water? Explain how you know.