Rotational Motion

Scott N. Walck

November 9, 2022

Rotational Quantities

Linear Qty	Symbol	Unit	Rotational Quantity	Symbol	Unit
Position	x	m	Angular Position	θ	rad
Velocity	v	m/s	Angular Velocity	ω	rad/s
Acceleration	a	m/s^2	Angular Acceleration	α	$\rm rad/s^2$
Mass	m	kg	Moment of Inertia	I	$kg m^2$
Force	F	N	Torque	au	N m
Net Force	$F_{\text{net}} = ma$	N	Net Torque	$\tau_{\rm net} = I\alpha$	N m
Trans. KE	$KE = \frac{1}{2} m v^2$	J	Rotational KE	$\text{KE} = \frac{1}{2}I\omega^2$	J
Momentum	p = mv	kg m/s	Angular Momentum	$L = I \overset{2}{\omega}$	Js

Rotational Kinematics

Linear Qty		Unit	Rotational Quantity		Unit
Position	x	m	Angular Position	θ	rad
Velocity	v	m/s	Angular Velocity	ω	rad/s
Acceleration	a	$\rm m/s^2$	Angular Acceleration	α	$\rm rad/s^2$

Degrees and radians both measure angle.

A radian is the angle that a length of one radius makes on the circumference of a circle.

$$2\pi \text{ radians} = 1 \text{ circle} = 360^{\circ}$$

In mathematics and physics, radians are often a superior unit for angles.

If angular acceleration is constant, use the CAA equations.

▶ Velocity-Time Equation

$$\omega = \omega_0 + \alpha t$$

▶ Position-Time Equation

$$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$$

▶ Position-Velocity Equation

$$\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$$

Meaning of symbols in CAA equations

t	the time	independent variable
θ	angular position at time t	dependent variable
ω	angular velocity at time t	dependent variable
α	the constant angular acceleration	parameter
θ_0	angular position at time 0	parameter
ω_0	angular velocity at time 0	parameter

Rotation about a fixed axis

$$\ell = r\theta$$

$$v = r\omega$$

$$a_{\mathsf{tan}} = r\alpha$$

- \triangleright r is the distance from the axis to a point we care about
- \triangleright θ is an angle through which the point has rotated
- \triangleright ω is the angular velocity of the rotation
- \triangleright α is the angular acceleration of the rotation
- \triangleright ℓ is the distance traveled for the point we care about
- \triangleright v is the speed of the point we care about
- $ightharpoonup a_{tan}$ is the tangential component of (linear) acceleration for the point we care about

If I had my way

I would define a constant θ_R equal to one radian.

$$\theta_R = 1 \text{ rad} = \frac{1}{2\pi} \text{ rev} = \frac{360^\circ}{2\pi}$$

I would make the equations slightly more complicated.

$$\ell = r \frac{\theta}{\theta_R}$$

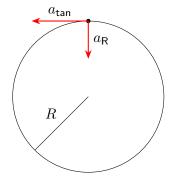
$$v = \frac{r\omega}{\theta_R}$$

$$a_{\rm tan} = \frac{r\alpha}{\theta_R}$$

The benefit of these equations is that you can use whatever angle units you want (degrees, radians, or revolutions).

Nonuniform Circular Motion

Rotation about a fixed axis



$$a_{\mathsf{tan}} = R\alpha$$

$$a_{\mathsf{R}} = \frac{v^2}{R} = \omega^2 R$$

ightharpoonup a is the linear acceleration of a point that is R from the axis.

Two meanings for $v = r\omega$

1. Fixed axis of rotation

- ightharpoonup r is the distance from the axis to a point we care about
- \triangleright ω is the angular velocity of the rotation
- \triangleright v is the speed of the point we care about

2. Rolling motion

- ightharpoonup r is the radius of the wheel
- \triangleright ω is the angular velocity of the rotation
- \triangleright v is the speed of the center of the wheel

Torque is the strength of a twist.

- ▶ A torque is clockwise or counterclockwise.
- ightharpoonup Symbol for torque: au
- ► SI unit for torque: N m (not J)

A force can produce a torque.

$$\tau = rF\sin\theta$$

- \triangleright F is the magnitude of the force.
- ightharpoonup r is the distance from where the force acts to the axis of rotation.
- θ is the angle between r and $F: 0^{\circ} \le \theta \le 180^{\circ}$
- ightharpoonup au is clockwise or counterclockwise (about the axis of rotation)

Moment of Inertia

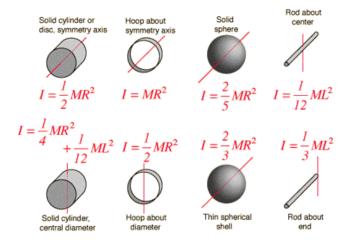
- ▶ Just like an object has a mass, it has a moment of inertia.
- ▶ Just as an object's mass quantifies the difficulty of producing acceleration of the object, an object's moment of inertia quantifies the difficulty of producing angular acceleration of the object.
- An object with a large mass requires a large force to experience acceleration. An object with a large moment of inertia requires a large torque to experience angular acceleration.
- ► Symbol for moment of inertia: *I*
- ► SI unit for moment of inertia: kg m²
- ▶ Don't confuse inertia with moment of inertia.

Moment of Inertia depends on axis of rotation.

$$I = \sum mr^2 = m_1r_1^2 + m_2r_2^2 + \cdots$$

- $ightharpoonup r_1$ is distance from m_1 to axis of rotation
- $ightharpoonup r_2$ is distance from m_2 to axis of rotation

Moments of inertia for common objects



Rotational version of Newton's 2nd law

$$\tau_{\rm net} = I\alpha$$

Two types of kinetic energy

► Translational kinetic energy

$$KE_{trans} = \frac{1}{2}mv^2$$

► Rotational kinetic energy

$$KE_{\rm rot} = \frac{1}{2}I\omega^2$$

► Total kinetic energy is the sum of the two

$$KE = KE_{trans} + KE_{rot}$$

Angular Momentum

- ightharpoonup Symbol: L
- \triangleright SI Unit: kg m²/s or J s

$$L=I\omega$$

▶ Ice skater example