General College Physics I (PHY 103)

Exam 3

Fall 2018

General College Physics I (PHY 103) Equation Sheet

 $x = x_0 + vt$ $\theta = \theta_0 + \omega t$ $v = v_0 + at$ $\omega = \omega_0 + \alpha t$ $x = x_0 + v_0 t + \frac{1}{2}at^2$ $\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$ $v^2 = v_0^2 + 2a(x - x_0)$ $\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$ $F_{\rm net} = ma$ $\tau_{\rm net} = I\alpha$ F = -kx $F_{\text{gravity}} = mg$ $V_x = V \cos \theta$ $x = x_0 \cos \omega (t - t_0)$ $V_y = V \sin \theta$ $v = -\omega x_0 \sin \omega (t - t_0)$ $a = -\omega^2 x_0 \cos \omega (t - t_0)$ $V = \sqrt{V_x^2 + V_y^2}$ $\omega = \sqrt{k/m}, \ \omega = \sqrt{g/l}$ $\tan \theta = V_y / V_x$ $a_{\rm R} = v^2/r$ $a_{\tan} = r\alpha$ $F = Gm_1m_2/r^2$ f = 1/T $\omega = 2\pi f$ $F_{\rm fr} = \mu_k F_{\rm N}$ $F_{\rm fr} \leq \mu_s F_{\rm N}$ $v = \lambda/T$ $W = F_{||}d = Fd_{||} = Fd\cos\theta \quad \tau = rF_{\perp} = r_{\perp}F = rF\sin\theta$ $KE = \frac{1}{2}I\omega^2$ $KE = \frac{1}{2}mv^2$ $W_{\rm net} = \Delta KE$ $PE_{grav} = mgh$ $\Delta E_{\rm th} = mc\Delta T$ $PE_{spring} = \frac{1}{2}kx^2$ $F_{\rm spring} = -kx$ ME = KE + PE $s = r\theta$ $W_{\rm net,NC} = \Delta ME$ $v = r\omega$ $L = I\omega$ $\mathbf{p} = m\mathbf{v}$ $\Delta \mathbf{P} = \mathbf{F}_{\text{net.ext}} \Delta t$ $q = 9.8 \text{ m/s}^2$ $G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$ $R = 8.314 \text{ J/mol} \cdot \text{K} = 0.0821 \text{ L} \cdot \text{atm/mol} \cdot \text{K}$ $k = 1.38 \times 10^{-23} \text{ J/K}$ 1 mi = 1609 m

 $1 \text{ atm} = 101,325 \text{ N/m}^2$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$C = 2\pi r$$
$$A = \pi r^2$$

Earth mass	$5.98 \times 10^{24} \text{ kg}$
Moon mass	$7.35\times10^{22}~{\rm kg}$
Sun mass	$1.99\times 10^{30}~\rm kg$
Earth radius (mean)	$6.38 \times 10^6 \mathrm{m}$
Moon radius (mean)	$1.74 \times 10^6 \mathrm{~m}$
Sun radius (mean)	$6.96\times 10^8~{\rm m}$
Earth-Moon distance (mean)	$3.84 \times 10^8 \text{ m}$
Earth-Sun distance (mean)	$1.496 \times 10^{11} {\rm m}$

Substance	Specific Heat $(J/kg \cdot C)$
Aluminum	900
Copper	390
Iron or steel	450
Lead	130
Silver	230
Water	
Ice $(-5^{\circ}C)$	2100
Liquid $(15^{\circ}C)$	4186
Steam $(110^{\circ}C)$	2010

	Melting	Heat of	Boiling	Heat of
Substance	Point	Fusion	Point	Vaporization
	$(^{\circ}C)$	(J/kg)	$(^{\circ}C)$	(J/kg)
Water	0	$333,\!000$	100	2.26×10^6
Lead	327	$25,\!000$	1750	870,000

	Object	Axis	Moment of Inertia
_	Solid cylinder	central axis	$I = \frac{1}{2}MR^2$
	Cylindrical shell	central axis	$I = MR^2$
	Solid ball	central axis	$I = \frac{2}{5}MR^2$
	Rod	through center \perp to rod	$I = \frac{1}{12}ML^2$
	Rod	through end \perp to rod	$I = \frac{1}{3}ML^2$

Question 1 (4 points) A bowling ball is dropped from a height h onto the center of a trampoline, which launches the ball back up into the air. How high will the ball rise? Explain.

Question 2 (4 points) Consider a pendulum (a mass at the end of a light string) swinging back and forth. Ignore air resistance. Is mechanical energy conserved? Explain how you know.

Question 3 (4 points) Consider two carts, of masses m and 2m, at rest on an air track. If you push first one cart for 3 s and then the other for the same length of time, exerting equal force on each, which cart has more kinetic energy? Explain how you know.

Question 4 (4 points) Can the mass of a rigid object be considered concentrated at its CM for rotational motion? Explain.

Problem 1 (8 points) Estimate the work you do to mow a lawn 10 m by 20 m with a 50-cm-wide mower. Assume you push with a force of about 15 N.

Problem 2 (8 points) Rain is falling at the rate of 2.5 cm/h and accumulates in a pan. If the raindrops hit at 8.0 m/s, estimate the force on the bottom of a 1.0-m^2 pan due to the impacting rain which we assume does not rebound. Water has a density of 1000 kg/m³.

Problem 3 (8 points) A cooling fan is turned off when it is running at 850 rev/min. It turns 1250 revolutions before it comes to a stop. (a) What was the fan's angular acceleration, assumed constant? (b) How long did it take the fan to come to a complete stop?