General College Physics I (PHY 103)

Exam 2

Fall 2018

General College Physics I (PHY 103) Equation Sheet

 $x = x_0 + vt$ $\theta = \theta_0 + \omega t$ $v = v_0 + at$ $\omega = \omega_0 + \alpha t$ $x = x_0 + v_0 t + \frac{1}{2}at^2$ $\theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2$ $v^2 = v_0^2 + 2a(x - x_0)$ $\omega^2 = \omega_0^2 + 2\alpha(\theta - \theta_0)$ $F_{\rm net} = ma$ $\tau_{\rm net} = I\alpha$ F = -kx $F_{\text{gravity}} = mg$ $V_x = V \cos \theta$ $x = x_0 \cos \omega (t - t_0)$ $V_y = V \sin \theta$ $v = -\omega x_0 \sin \omega (t - t_0)$ $a = -\omega^2 x_0 \cos \omega (t - t_0)$ $V = \sqrt{V_x^2 + V_y^2}$ $\omega = \sqrt{k/m}, \ \omega = \sqrt{g/l}$ $\tan \theta = V_y / V_x$ $a_{\rm R} = v^2/r$ $a_{\tan} = r\alpha$ $F = Gm_1m_2/r^2$ f = 1/T $\omega = 2\pi f$ $F_{\rm fr} = \mu_k F_{\rm N}$ $F_{\rm fr} \leq \mu_s F_{\rm N}$ $v = \lambda/T$ $W = F_{||}d = Fd_{||} = Fd\cos\theta \quad \tau = rF_{\perp} = r_{\perp}F = rF\sin\theta$ $KE = \frac{1}{2}I\omega^2$ $KE = \frac{1}{2}mv^2$ $W_{\rm net} = \Delta KE$ $PE_{grav} = mgh$ $\Delta E_{\rm th} = mc\Delta T$ $PE_{spring} = \frac{1}{2}kx^2$ $F_{\rm spring} = -kx$ ME = KE + PE $s = r\theta$ $W_{\rm net,NC} = \Delta ME$ $v = r\omega$ $L = I\omega$ $\mathbf{p} = m\mathbf{v}$ $\Delta \mathbf{P} = \mathbf{F}_{\text{net.ext}} \Delta t$ $q = 9.8 \text{ m/s}^2$ $G = 6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$ $R = 8.314 \text{ J/mol} \cdot \text{K} = 0.0821 \text{ L} \cdot \text{atm/mol} \cdot \text{K}$ $k = 1.38 \times 10^{-23} \text{ J/K}$ 1 mi = 1609 m

 $1 \text{ atm} = 101,325 \text{ N/m}^2$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$C = 2\pi r$$
$$A = \pi r^2$$

Earth mass	$5.98 \times 10^{24} \text{ kg}$
Moon mass	$7.35\times10^{22}~{\rm kg}$
Sun mass	$1.99\times 10^{30}~\rm kg$
Earth radius (mean)	$6.38 \times 10^6 \mathrm{m}$
Moon radius (mean)	$1.74 \times 10^6 \mathrm{~m}$
Sun radius (mean)	$6.96\times 10^8~{\rm m}$
Earth-Moon distance (mean)	$3.84 \times 10^8 \text{ m}$
Earth-Sun distance (mean)	$1.496 \times 10^{11} {\rm m}$

Substance	Specific Heat $(J/kg \cdot C)$
Aluminum	900
Copper	390
Iron or steel	450
Lead	130
Silver	230
Water	
Ice $(-5^{\circ}C)$	2100
Liquid $(15^{\circ}C)$	4186
Steam $(110^{\circ}C)$	2010

	Melting	Heat of	Boiling	Heat of
Substance	Point	Fusion	Point	Vaporization
	$(^{\circ}C)$	(J/kg)	$(^{\circ}C)$	(J/kg)
Water	0	$333,\!000$	100	2.26×10^6
Lead	327	$25,\!000$	1750	870,000

	Object	Axis	Moment of Inertia
_	Solid cylinder	central axis	$I = \frac{1}{2}MR^2$
	Cylindrical shell	central axis	$I = MR^2$
	Solid ball	central axis	$I = \frac{2}{5}MR^2$
	Rod	through center \perp to rod	$I = \frac{1}{12}ML^2$
	Rod	through end \perp to rod	$I = \frac{1}{3}ML^2$

Question 1 (4 points) The force of gravity on a 2-kg rock is twice as great as that on a 1-kg rock. Why then doesn't the heavier rock fall faster?

Question 2 (4 points) A water balloon is launched into the air (do not ignore air resistance) at an angle above the horizontal and follows a parabolic trajectory until it smashes on the ground. Draw a free body diagram for the water balloon just after it leaves the launcher, and second free body diagram just before it hits the ground. Be sure to label which is which.

Question 3 (4 points) A box on the end of a string swings from side to side like a pendulum. When the string is vertical, compare the tension in the string to the weight of the box. (Which is bigger, or are they equal?) Explain how you know.

Question 4 (4 points) Can a particle with constant speed be accelerating? What if it has constant velocity? Explain.

Problem 1 (8 points) What average force is required to stop a 950-kg car in 8.0 s if the car is traveling at 95 km/h?

Problem 2 (8 points) What is the period of a person on a carousel if the person has an acceleration of 2.5 m/s^2 when she is standing 2.7 m from the axis?

Problem 3 (8 points) What will a spring scale read for the weight of a 58.0kg woman in an elevator that moves (a) upward with constant speed 5.0 m/s, (b) downward with constant speed 5.0 m/s, (c) with an upward acceleration 0.23g, (d) with a downward acceleration 0.23g, and (e) in free fall?