Mechanical Energy

Scott N. Walck

October 27, 2023

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Types of Energy

Kinetic energyorderedPotential energyorderedThermal energydisorderedElectromagnetic energyorderedChemical energyorderedNuclear energyorderedMass energyordered

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The SI unit for energy is the Joule (J).

kWh	3,600,000 J
Cal	4190 J
Btu	1056 J
mWh	3.6 J
eV	$1.6022 imes 10^{-19}$ J

Scales of Energy

80 kJ laptop battery

- 10 MJ daily human food intake (2400 Cal)
- 200 MJ average daily human energy use (world)
- 1000 MJ average daily human energy use (US)
 - 500 EJ yearly global energy use

Laptop battery: 24000 mWh \approx 80 kJ

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Kinetic Energy

An object with mass m and speed v has kinetic energy

$$\mathrm{KE} = \frac{1}{2}mv^2$$

A system of two objects has kinetic energy

$$\mathrm{KE} = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Kinetic energy belongs to an object.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Properties of an object:

- mass
- position
- velocity
- kinetic energy

Work

A force can do work on an object. Work, like energy, is measured in Joules (J). The work done by a force F on an object experiencing a displacement d is

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

No Displacement, No Work

If an object doesn't move, forces may be acting on it, but none of them do any work.

 $W = Fd\cos\theta$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

If d = 0, then W = 0.

A force perpendicular to displacement does no work.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

If $\theta = 90^{\circ}$, then W = 0.

A force can do negative work.

 $W = Fd\cos\theta$

▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ 二 臣

If $\theta > 90^{\circ}$, then W < 0.

Net Work

The net work done on an object is the sum of the work done by each force that acts on the object.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Good news: Work and energy are scalars, so we are just adding (positive or negative) numbers here.

Analogy

Each object has a checking account that contains its kinetic energy. The checking account can go to zero, but it cannot go negative.

Physics	Banking
kinetic energy	checking account balance
work done by gravity	deposit or withdrawal by gravity
work done by Amy pushing	deposit or withdrawal by Amy
work done by tension	deposit or withdrawal by tension
work done by normal force	deposit or withdrawal by normal force

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The net work done on an object is equal to the change in its kinetic energy.

$$W_{\sf net} = \Delta_{\sf KE}$$

Applied to one object:

$$W_{\mathsf{net}} = \frac{1}{2}mv_f^2 - \frac{1}{2}mv_i^2$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Conservative and nonconservative forces

Force	Conservative?	Potential Energy
Gravity	Conservative	PE = mgy
Normal Force	Nonconservative	none
Rope Tension	Nonconservative	none
Friction	Nonconservative	none
Spring	Conservative	$PE = \frac{1}{2}kx^2$

Mechanical Energy

The mechanical energy of a system is the sum of its kinetic energy and its potential energy.

ME = KE + PE

For one object,

$$ME = \frac{1}{2}mv^2 + mgy + \frac{1}{2}kx^2.$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The $\frac{1}{2}kx^2$ is only included when a spring is present.

Mechanical Energy for a System of Objects and Springs

Include in mechanical energy:

- $\frac{1}{2}mv^2$ for each object
- mgy for each object (assuming all objects are near Earth's surface)
- $\frac{1}{2}kx^2$ for each spring

For two objects and one spring,

$$\text{ME} = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 + mgy_1 + mgy_2 + \frac{1}{2}kx^2$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

The net work done on an object by nonconservative forces is equal to the change in its mechanical energy.

 $W_{net,NC} = \Delta_{ME}$

Applied to one object with one spring:

$$W_{\text{net,NC}} = \frac{1}{2}mv_f^2 + mgy_f + \frac{1}{2}kx_f^2 - \frac{1}{2}mv_i^2 - mgy_i - \frac{1}{2}kx_i^2$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Mechanical energy is conserved if

- 1. no nonconservative forces are present, or
- 2. nonconservative forces are present but they do no work, or
- nonconservative forces are present and do work but the work done by some exactly cancels the work done by others.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Conservation of Mechanical Energy

If mechanical energy is conserved:

$$KE_i + PE_i = KE_f + PE_f$$

If mechanical energy is conserved for one mass and one spring, the previous equation expands into this:

$$\frac{1}{2}mv_i^2 + mgy_i + \frac{1}{2}kx_i^2 = \frac{1}{2}mv_f^2 + mgy_f + \frac{1}{2}kx_f^2$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Analogy between Mechanical Energy and Banking

Each physical system has a checking account and a savings account. The checking account can go to zero, but it cannot go negative. The savings account can go negative if you borrow money.

Physics	Banking
kinetic energy	checking account balance
potential energy	savings account balance
work done by gravity	not a transaction
work done by Amy pushing	deposit or withdrawal by Amy
work done by tension	deposit or withdrawal by tension
work done by normal force	deposit or withdrawal by normal force

Using Mechanical Energy as a Tool

Check if mechanical energy is conserved using the 3 criteria.
If mechanical energy is conserved:

 $KE_i + PE_i = KE_f + PE_f$

If mechanical energy is not conserved:

 $W_{net,NC} = \Delta_{ME}$ = $\kappa_{E_f} + PE_f - \kappa_i - PE_i$

Power

- Power is energy transformed per unit time.
- Power can be work per unit time.
- The power imparted by a force F acting on an object with velocity v is

$$P = Fv\cos\theta,$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

where θ is the angle between the force and the velocity.

Wrong question

- How much power does the nuclear plant produce in a day?
- How much energy can the plant continuously produce?

Right question

- How much energy does the nuclear plant produce in a day?
- How much power can the plant continuously produce?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @