Constant Acceleration Equations in Two Dimensions

Scott N. Walck

September 13, 2021

If acceleration is constant, use the 2D CA equations.

 constant acceleration = constant magnitude and constant direction

x component

▶ Velocity-Time Equation

$$v_x = v_{x0} + a_x t$$

Position-Time Equation

$$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$$

► Position-Velocity Equation

$$v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$$

y component

Velocity-Time Equation

$$v_y = v_{y0} + a_y t$$

Position-Time Equation

$$y = y_0 + v_{y0}t + \frac{1}{2}a_yt^2$$

Position-Velocity Equation

$$v_y^2 = v_{y0}^2 + 2a_y(y - y_0)$$

Meaning of symbols in 2D CA equations

t	the time	independent variable
X	x component of position at time t	dependent variable
y	y component of position at time t	dependent variable
V_X	x component of velocity at time t	dependent variable
V_y	y component of velocity at time t	dependent variable
a_{x}	x component of the constant acceleration	parameter
a_y	y component of the constant acceleration	parameter
<i>x</i> ₀	x component of position at time 0	parameter
<i>y</i> ₀	y component of position at time 0	parameter
v_{x0}	x component velocity at time 0	parameter
Vvn	v component velocity at time 0	parameter

Throughout a motion, some symbols stay the same and some change.

t	the time	changing
X	x component of position at time t	changing
У	y component of position at time t	changing
V_X	x component of velocity at time t	changing
v_y	y component of velocity at time t	changing
$a_{\scriptscriptstyle X}$	x component of the constant acceleration	constant
a_y	y component of the constant acceleration	constant
<i>x</i> ₀	x component of position at time 0	constant
<i>y</i> ₀	y component of position at time 0	constant
v_{x0}	x component velocity at time 0	constant
v_{y0}	y component velocity at time 0	constant

For projectile motion, use $a_x = 0$ and $a_y = -g$ or $a_y = g$ in the 2D CA equations.

For projectile motion, use one of two coordinate systems:

1. Standard coordinate system: $a_x = 0$, $a_y = -g$

2. "Down positive" coordinate system: $a_x = 0$, $a_y = g$

