Constant Acceleration Equations

Scott N. Walck

September 13, 2021

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

If acceleration is constant, use the CA equations.

Velocity-Time Equation

$$v = v_0 + at$$

Position-Time Equation

$$x = x_0 + v_0t + \frac{1}{2}at^2$$

Position-Velocity Equation

$$v^2 = v_0^2 + 2a(x - x_0)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Meaning of symbols in CA equations

t	the time	independent variable
x	position at time <i>t</i>	dependent variable
v	velocity at time <i>t</i>	dependent variable
а	the constant acceleration	parameter
<i>x</i> ₀	position at time 0	parameter
v_0	velocity at time 0	parameter

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Throughout a motion, some symbols stay the same and some change.

t	the time	changing
x	position at time <i>t</i>	changing
v	velocity at time <i>t</i>	changing
а	the constant acceleration	constant
<i>x</i> ₀	position at time 0	constant
v ₀	velocity at time 0	constant

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ