Wave-Particle Duality and an Introduction to Quantum Mechanics

Scott N. Walck University of Rochester

Thanks to Richard Feynman, Feynman Lectures

An Experiment with Particles

An Experiment with Waves

TOP VIEW OF WAVES IN A POND

A = CONSTRUCTIVE INTERFERENCE

B: DESTRUCTUE INTERFERENCE

Wave Experiment with Slit 2 Blocked

Interference Mathematics

$$I_1 = \left| h_1 \right|^2$$

with slit 2 closed

 h_1, h_2 complex

$$I_2 = \left| h_2 \right|^2$$

with slit 1 closed

$$I_{12} = |h_1 + h_2|^2 = |h_1|^2 + |h_2|^2 + 2|h_1||h_2|\cos\delta$$

= $I_1 + I_2 + 2\sqrt{I_1I_2}\cos\delta$

interference term

$$(a+b)^2 \neq a^2 + b^2$$
 $(a+b)^2 = a^2 + b^2 + 2ab$

Wave Experiment: Summary

An Experiment with Electrons

An Experiment with Electrons

Proposition M

Each electron
either
goes through slit 1
or
goes through slit 2

Electron Experiment with Slit 2 Blocked

Electron Experiment: Summary

Interference Mathematics for Electrons is Identical to that for Waves

Introduce probability amplitudes φ_1, φ_2

$$P_1 = \left| \varphi_1 \right|^2$$

with slit 2 closed

 φ_1, φ_2 complex

$$P_2 = \left| \varphi_2 \right|^2$$

with slit 1 closed

$$P_{12} = |\varphi_1 + \varphi_2|^2 = |\varphi_1|^2 + |\varphi_2|^2 + 2|\varphi_1||\varphi_2|\cos\delta$$

$$= I_1 + I_2 + 2\sqrt{I_1 I_2}\cos\delta$$

interference term

Electron Experiment with Laser

Electron Experiment with Laser

Electron Experiment with Low-Power Laser

Electron Experiment with Low-Power Laser

A few more properties of light

Momentum of a photon is inversely proporional to its wavelength

Can't focus light to a point:

We'll try to get the interference pattern back by lowering the frequency of the light

The interference pattern returns when we can't resolve which path the electron took

What about Proposition M?

If one can determine experimentally which slit an electron went through, then Proposition M is true.

If one cannot determine which slit an electron went through, then we don't know.

Quantum Mechanics of Bullets

Basic Rules of Quantum Mechanics

1. Probability of an event is given by the square of a probability amplitude

$$P = \left| \varphi \right|^2$$

2. If an event can occur in several ways, add amplitudes

$$\varphi = \varphi_1 + \varphi_2$$

$$P = \left| \varphi_1 + \varphi_2 \right|^2$$

3. If an experiment is performed which can determine the way taken, add probabilities

$$P = P_1 + P_2$$

Conclusions

- Electrons (and other small particles) are not classical particles and are not waves.
- "Wave-Particle Duality" refers to the fact that sometimes they behave like each.
- Though mathematically sound and experimentally upheld, Quantum Mechanics remains interpretationally precarious.