Stern-Gerlach Experiment

Scott N. Walck

November 2, 2018

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Stern-Gerlach experiment (1922)

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 2990

- \blacktriangleright expect a range in amount deflection
- \blacktriangleright get exactly two types of deflection
- ulgeright puts the quantum in quantum mechanics
- Ag acts like a spin- $1/2$ particle

Spin-1/2 particle

- \blacktriangleright Any particle that has two outcomes in a Stern-Gerlach experiment is a spin-1/2 particle
- Some spin- $1/2$ particles
	- \blacktriangleright The electron
	- \blacktriangleright The proton
	- \blacktriangleright The neutron
	- \blacktriangleright Every quark
- \triangleright A qubit is any quantum system for which some two-outcome experiment can be performed (doesn't need to be a Stern-Gerlach experiment).
- \blacktriangleright Every quantity associated with a qubit has two possible values (for example, Σ_1 , Σ_2 , and Σ_3 are quantities associated with a qubit).

Pauli Vector

 \blacktriangleright Three vectors that contain the same information

- \blacktriangleright Magnetic moment is most readily measured
- \triangleright We will work mostly with the Pauli vector

KOKK@KKEKKEK E 1990

Stern-Gerlach outcomes

Measurement in the x direction (1 direction):

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ (할 수 있어)

The totally mixed state of one qubit

Is it possible to have the following probabilities?

- In the 1 direction: $\rho(-1) = 1/2$, $\rho(1) = 1/2$
- In the 2 direction: $\rho(-1) = 1/2$, $\rho(1) = 1/2$
- In the 3 direction: $\rho(-1) = 1/2$, $\rho(1) = 1/2$

KORKAR KERKER SAGA

Yes!

Because
$$
\langle \Sigma_1 \rangle = \langle \Sigma_2 \rangle = \langle \Sigma_3 \rangle = 0
$$
 and so $\langle \Sigma_1 \rangle^2 + \langle \Sigma_2 \rangle^2 + \langle \Sigma_3 \rangle^2 \leq 1.$

An impossible situation

Is it possible to have the following probabilities?

- In the 1 direction: $\rho(-1) = 0$, $\rho(1) = 1$
- In the 2 direction: $\rho(-1) = 0$, $\rho(1) = 1$
- In the 3 direction: $\rho(-1) = 1/2$, $\rho(1) = 1/2$

No!

Because $\langle\Sigma_1\rangle = \langle\Sigma_2\rangle = 1$ and so $\langle\Sigma_1\rangle^2 + \langle\Sigma_2\rangle^2 + \langle\Sigma_3\rangle^2 \nleq 1$.

 \blacktriangleright If a particle has a definite value in one direction, it cannot have a definite value in any other direction.

KORKAR KERKER SAGA

Knowing the probabilities for a Pauli matrix is equivalent to knowing the mean value of the Pauli matrix.

Every Pauli matrix has possible values -1 and 1. Take Σ_1 , for example.

$$
\langle \Sigma_1 \rangle = \rho(-1)(-1) + \rho(1)(1)
$$

$$
\rho(-1) = \frac{1}{2} - \frac{1}{2}\langle\Sigma_1\rangle
$$

$$
\rho(1) = \frac{1}{2} + \frac{1}{2}\langle\Sigma_1\rangle
$$

Which probabilities are possible?

A collection of probability distributions for Σ_1 , Σ_2 , and Σ_3 is possible if and only if

$$
\langle \Sigma_1 \rangle^2 + \langle \Sigma_2 \rangle^2 + \langle \Sigma_3 \rangle^2 \leq 1.
$$

- \blacktriangleright Points inside and on the sphere are possible states
- \blacktriangleright Points outside the sphere are not possible

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{B} + \mathbf{A} \oplus \mathbf{A}$

 2990

A spin-1/2 particle is a qubit

Bloch sphere describes the state of a qubit

K □ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q @

Measurement in the x direction (1 direction)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Measurement in the y direction (2 direction)

KORK EXTERNE PROVIDE

Measurement in the z direction (3 direction)

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

The totally mixed state of one qubit

Is it possible to have the following probabilities?

- In the 1 direction: $\rho(-1) = 1/2$, $\rho(1) = 1/2$
- In the 2 direction: $\rho(-1) = 1/2$, $\rho(1) = 1/2$

In the 3 direction: $\rho(-1) = 1/2$, $\rho(1) = 1/2$ Yes!

Because $\langle \Sigma_1 \rangle = \langle \Sigma_2 \rangle = \langle \Sigma_3 \rangle = 0$ and so $\langle \Sigma_1 \rangle^2 + \langle \Sigma_2 \rangle^2 + \langle \Sigma_3 \rangle^2 \leq 1.$

KORKARYKERKER OQO

An impossible situation

Is it possible to have the following probabilities?

- In the 1 direction: $\rho(-1) = 0$, $\rho(1) = 1$
- In the 2 direction: $\rho(-1) = 0$, $\rho(1) = 1$

► In the 3 direction:
$$
\rho(-1) = 1/2
$$
, $\rho(1) = 1/2$
No!

Because $\langle\Sigma_1\rangle = \langle\Sigma_2\rangle = 1$ and so $\langle\Sigma_1\rangle^2 + \langle\Sigma_2\rangle^2 + \langle\Sigma_3\rangle^2 \nleq 1$.

 \blacktriangleright If a particle has a definite value in one direction, it cannot have a definite value in any other direction.

KORKARYKERKER OQO

Stern-Gerlach beam splitter

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Townsend's Experiment 1: Reproducibility

- \triangleright Every particle that exits with a value of 1 will exit again with a value of 1 if measured in the same direction.
- \triangleright Every particle that exits with a value of -1 will exit again with a value of -1 if measured in the same direction.
- \blacktriangleright Results are not completely random for every measurement. There is some predictability.

KORKARYKERKER POLO

Townsend's Experiment 2: Z then X

K ロ X (日) X (日)

Townsend's Experiment 3: Z then X then Z

イロト イ部 トイ君 トイ君 トー

高。 299 Stern-Gerlach beam recombiner

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Townsend's Experiment 4: Recombination

イロト イ押 トイミト イミト

ミー 299

- \triangleright The possible values of Σ_1 are -1 and 1.
- \blacktriangleright The possible values of

$$
x_1\Sigma_1+x_2\Sigma_2+x_3\Sigma_3
$$

are

$$
-r, r
$$

where

$$
r = \sqrt{x_1^2 + x_2^2 + x_3^2}.
$$

 \blacktriangleright The possible values of

$$
x_01 + x_1\Sigma_1 + x_2\Sigma_2 + x_3\Sigma_3
$$

are

$$
x_0-r, x_0+r
$$

where

$$
r = \sqrt{x_1^2 + x_2^2 + x_3^2}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

 \blacktriangleright The possible values of

$$
M=z_01+c(x_1\Sigma_1+x_2\Sigma_2+x_3\Sigma_3)
$$

are

$$
z_0 - cr, z_0 + cr
$$

where

$$
r = \sqrt{x_1^2 + x_2^2 + x_3^2}.
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

How can we describe the state of a spin-1/2 particle?

 \triangleright Method 1: Specify three real numbers $\langle \Sigma_1 \rangle$, $\langle \Sigma_2 \rangle$, and $\langle \Sigma_3 \rangle$ that satisfy

 $\langle \Sigma_1 \rangle^2 + \langle \Sigma_2 \rangle^2 + \langle \Sigma_3 \rangle^2 \leq 1.$

KORKAR KERKER SAGA

 \triangleright Method 2: Specify a definite value for a physical quantity. (The definite value must be one of the possible values of the physical quantity.)

Converting from Method 2 to Method 1

IF The possible values of $M = x_0 1 + x_1 \Sigma_1 + x_2 \Sigma_2 + x_3 \Sigma_3$ are

$$
x_0-r, x_0+r
$$

where

$$
r = \sqrt{x_1^2 + x_2^2 + x_3^2}.
$$

If M has the definite value $x_0 - r$, then

If M has the definite value $x_0 + r$, then

 $\langle \Sigma_1 \rangle = -\frac{x_1}{x_1}$ r $\langle \Sigma_2 \rangle = -\frac{x_2}{x}$ r $\langle \Sigma_3 \rangle = -\frac{x_3}{x}$ $\frac{3}{r}$.

$$
\langle \Sigma_1 \rangle = \frac{x_1}{r}
$$

$$
\langle \Sigma_2 \rangle = \frac{x_2}{r}
$$

$$
\langle \Sigma_3 \rangle = \frac{x_3}{r}.
$$

KORKARYKERKER POLO

Outcome probabilities

 \blacktriangleright The possible values of

$$
M = x_0 1 + x_1 \Sigma_1 + x_2 \Sigma_2 + x_3 \Sigma_3
$$

are

$$
x_0-r, x_0+r
$$

where

$$
r = \sqrt{x_1^2 + x_2^2 + x_3^2}.
$$

 \blacktriangleright The probabilities for these outcomes are

$$
\rho(x_0-r)=\frac{1}{2}-\frac{1}{2}\langle U\rangle \qquad \rho(x_0+r)=\frac{1}{2}+\frac{1}{2}\langle U\rangle
$$

where

$$
U=\frac{x_1}{r}\Sigma_1+\frac{x_2}{r}\Sigma_2+\frac{x_3}{r}\Sigma_3.
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Collapse of the wavepacket

- \blacktriangleright Typically, before a measurement, a physical quantity M does not have a definite value. There are different possibilities for the outcome of a measurement of M.
- \triangleright After we measure physical quantity M and get a particular outcome m (either $x_0 - r$ or $x_0 + r$), the new state of the particle is one in which the physical quantity M has the definite value m.
- \triangleright We say that the state has collapsed to one in which M has the definite value m.

Spin-1/2 summary

- \blacktriangleright What is a spin-1/2 particle?
- \triangleright What kind of measurements can I make on a spin-1/2 particle?
- \triangleright What are the possible outcomes I can get from these measurements?

 \triangleright Can I predict in advance what outcome I will get?

Measurement postulate for a spin-1/2 particle

1. A number of real physical quantities can be measured on a spin- $1/2$ particle. A real physical quantity is described by a matrix

$$
x_01+x_1\Sigma_1+x_2\Sigma_2+x_3\Sigma_3
$$

in which x_0 , x_1 , x_2 , and x_3 are real numbers.

2. Each real physical quantity has two possible outcomes. We will get one of these outcomes when we make the measurement.