Stern-Gerlach Experiment

Scott N. Walck

November 2, 2018

Stern-Gerlach experiment (1922)

イロト 不得 トイヨト イヨト

э

- expect a range in amount deflection
- get exactly two types of deflection
- puts the quantum in quantum mechanics
- Ag acts like a spin-1/2 particle

Spin-1/2 particle

- Any particle that has two outcomes in a Stern-Gerlach experiment is a spin-1/2 particle
- ▶ Some spin-1/2 particles
 - The electron
 - The proton
 - The neutron
 - Every quark
- A qubit is any quantum system for which some two-outcome experiment can be performed (doesn't need to be a Stern-Gerlach experiment).
- Every quantity associated with a qubit has two possible values (for example, Σ₁, Σ₂, and Σ₃ are quantities associated with a qubit).

Pauli Vector

_

	1-direction	2-direction	3-direction
Pauli vector	Σ_1	Σ_2	Σ ₃
Spin angular momentum	$S_1=rac{\hbar}{2}\Sigma_1$	$S_2 = \frac{\hbar}{2} \Sigma_2$	$S_3=rac{\hbar}{2}\Sigma_3$
Magnetic moment	$\mu \Sigma_1$	$\mu \Sigma_2$	$\mu \Sigma_3$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

- Three vectors that contain the same information
- Magnetic moment is most readily measured
- We will work mostly with the Pauli vector

	1-direction	2-direction	3-direction
Pauli vector	Σ_1	Σ ₂	Σ ₃
possible values	-1, 1	-1, 1	-1, 1
Spin angular momentum possible values	$S_1 = rac{\hbar}{2} \Sigma_1 \ -rac{\hbar}{2}, rac{\hbar}{2}$	$S_2=rac{\hbar}{2}\Sigma_2 -rac{\hbar}{2},rac{\hbar}{2}$	$S_3 = rac{\hbar}{2} \Sigma_3 \ -rac{\hbar}{2}, rac{\hbar}{2}$
Magnetic moment possible values	$\mu \Sigma_1 \ -\mu, \mu$	$\mu \Sigma_2 \ -\mu, \mu$	$\mu \Sigma_3 \ -\mu, \mu$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで

Stern-Gerlach outcomes

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

The totally mixed state of one qubit

Is it possible to have the following probabilities?

- ▶ In the 1 direction: $\rho(-1) = 1/2$, $\rho(1) = 1/2$
- ▶ In the 2 direction: $\rho(-1) = 1/2$, $\rho(1) = 1/2$
- ▶ In the 3 direction: $\rho(-1) = 1/2$, $\rho(1) = 1/2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Yes!

Because
$$\langle \Sigma_1 \rangle = \langle \Sigma_2 \rangle = \langle \Sigma_3 \rangle = 0$$
 and so $\langle \Sigma_1 \rangle^2 + \langle \Sigma_2 \rangle^2 + \langle \Sigma_3 \rangle^2 \leq 1.$

An impossible situation

Is it possible to have the following probabilities?

- In the 1 direction: $\rho(-1) = 0$, $\rho(1) = 1$
- ▶ In the 2 direction: $\rho(-1) = 0$, $\rho(1) = 1$
- In the 3 direction: $\rho(-1) = 1/2$, $\rho(1) = 1/2$

No!

Because $\langle \Sigma_1 \rangle = \langle \Sigma_2 \rangle = 1$ and so $\langle \Sigma_1 \rangle^2 + \langle \Sigma_2 \rangle^2 + \langle \Sigma_3 \rangle^2 \nleq 1$.

If a particle has a definite value in one direction, it cannot have a definite value in any other direction.

Knowing the probabilities for a Pauli matrix is equivalent to knowing the mean value of the Pauli matrix.

Every Pauli matrix has possible values -1 and 1. Take Σ_1 , for example.

$$\langle \Sigma_1
angle =
ho(-1)(-1) +
ho(1)(1)$$

$$egin{aligned} &
ho(-1) = rac{1}{2} - rac{1}{2} \langle \Sigma_1
angle \ &
ho(1) = rac{1}{2} + rac{1}{2} \langle \Sigma_1
angle \end{aligned}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Which probabilities are possible?

A collection of probability distributions for $\Sigma_1,\,\Sigma_2,$ and Σ_3 is possible if and only if

$$\langle \Sigma_1 \rangle^2 + \langle \Sigma_2 \rangle^2 + \langle \Sigma_3 \rangle^2 \le 1.$$

- Points inside and on the sphere are possible states
- Points outside the sphere are not possible

(日) (四) (日) (日) (日)

A spin-1/2 particle is a qubit

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Bloch sphere describes the state of a qubit

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Measurement in the x direction (1 direction)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Measurement in the y direction (2 direction)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Measurement in the z direction (3 direction)

▲□▶ ▲□▶ ▲臣▶ ★臣▶ = 臣 = のへで

The totally mixed state of one qubit

Is it possible to have the following probabilities?

- ▶ In the 1 direction: $\rho(-1) = 1/2$, $\rho(1) = 1/2$
- ▶ In the 2 direction: $\rho(-1) = 1/2$, $\rho(1) = 1/2$

▶ In the 3 direction: $\rho(-1) = 1/2$, $\rho(1) = 1/2$ Yes!

Because $\langle \Sigma_1 \rangle = \langle \Sigma_2 \rangle = \langle \Sigma_3 \rangle = 0$ and so $\langle \Sigma_1 \rangle^2 + \langle \Sigma_2 \rangle^2 + \langle \Sigma_3 \rangle^2 \leq 1.$

An impossible situation

Is it possible to have the following probabilities?

- ▶ In the 1 direction: $\rho(-1) = 0$, $\rho(1) = 1$
- ▶ In the 2 direction: $\rho(-1) = 0$, $\rho(1) = 1$
- ▶ In the 3 direction: $\rho(-1) = 1/2$, $\rho(1) = 1/2$

No!

Because $\langle \Sigma_1 \rangle = \langle \Sigma_2 \rangle = 1$ and so $\langle \Sigma_1 \rangle^2 + \langle \Sigma_2 \rangle^2 + \langle \Sigma_3 \rangle^2 \nleq 1.$

If a particle has a definite value in one direction, it cannot have a definite value in any other direction.

Stern-Gerlach beam splitter

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● ● ●

Townsend's Experiment 1: Reproducibility

- Every particle that exits with a value of 1 will exit again with a value of 1 if measured in the same direction.
- ► Every particle that exits with a value of -1 will exit again with a value of -1 if measured in the same direction.
- Results are not completely random for every measurement. There is some predictability.

Townsend's Experiment 2: Z then X

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Townsend's Experiment 3: Z then X then Z

<ロト <回ト < 回ト < 回ト

æ.

Stern-Gerlach beam recombiner

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Townsend's Experiment 4: Recombination

▲□▶ ▲御▶ ▲臣▶ ▲臣▶ 三臣 - のへで

- The possible values of Σ_1 are -1 and 1.
- The possible values of

$$x_1\Sigma_1 + x_2\Sigma_2 + x_3\Sigma_3$$

are

$$-r, r$$

where

$$r = \sqrt{x_1^2 + x_2^2 + x_3^2}.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

The possible values of

$$x_01 + x_1\Sigma_1 + x_2\Sigma_2 + x_3\Sigma_3$$

are

$$x_0 - r, x_0 + r$$

where

$$r = \sqrt{x_1^2 + x_2^2 + x_3^2}.$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

The possible values of

$$M = z_0 1 + c(x_1 \Sigma_1 + x_2 \Sigma_2 + x_3 \Sigma_3)$$

are

$$z_0 - cr, z_0 + cr$$

where

$$r = \sqrt{x_1^2 + x_2^2 + x_3^2}.$$

(ロ)、(型)、(E)、(E)、 E) のQ(()

How can we describe the *state* of a spin-1/2 particle?

• Method 1: Specify three real numbers $\langle \Sigma_1 \rangle$, $\langle \Sigma_2 \rangle$, and $\langle \Sigma_3 \rangle$ that satisfy

 $\langle \Sigma_1 \rangle^2 + \langle \Sigma_2 \rangle^2 + \langle \Sigma_3 \rangle^2 \leq 1.$

 Method 2: Specify a definite value for a physical quantity. (The definite value must be one of the possible values of the physical quantity.) Converting from Method 2 to Method 1

• The possible values of $M = x_0 1 + x_1 \Sigma_1 + x_2 \Sigma_2 + x_3 \Sigma_3$ are

$$x_0 - r, x_0 + r$$

where

$$r = \sqrt{x_1^2 + x_2^2 + x_3^2}.$$

If M has the definite value $x_0 - r$, then

If M has the definite value $x_0 + r$, then

$$\begin{split} \langle \Sigma_1 \rangle &= -\frac{x_1}{r} \\ \langle \Sigma_2 \rangle &= -\frac{x_2}{r} \\ \langle \Sigma_3 \rangle &= -\frac{x_3}{r}. \end{split}$$

$$\langle \Sigma_1 \rangle = \frac{x_1}{r} \\ \langle \Sigma_2 \rangle = \frac{x_2}{r} \\ \langle \Sigma_3 \rangle = \frac{x_3}{r} .$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ = 臣 - のへで

Outcome probabilities

The possible values of

$$M = x_0 1 + x_1 \Sigma_1 + x_2 \Sigma_2 + x_3 \Sigma_3$$

are

$$x_0 - r, x_0 + r$$

where

$$r = \sqrt{x_1^2 + x_2^2 + x_3^2}.$$

The probabilities for these outcomes are

$$\rho(x_0 - r) = \frac{1}{2} - \frac{1}{2} \langle U \rangle \qquad \rho(x_0 + r) = \frac{1}{2} + \frac{1}{2} \langle U \rangle$$

where

$$U = \frac{x_1}{r} \Sigma_1 + \frac{x_2}{r} \Sigma_2 + \frac{x_3}{r} \Sigma_3.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Collapse of the wavepacket

- Typically, before a measurement, a physical quantity M does not have a definite value. There are different possibilities for the outcome of a measurement of M.
- After we measure physical quantity M and get a particular outcome m (either x₀ - r or x₀ + r), the new state of the particle is one in which the physical quantity M has the definite value m.
- We say that the state has collapsed to one in which M has the definite value m.

Spin-1/2 summary

- What is a spin-1/2 particle?
- What kind of measurements can I make on a spin-1/2 particle?
- What are the possible outcomes I can get from these measurements?

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Can I predict in advance what outcome I will get?

Measurement postulate for a spin-1/2 particle

 A number of real physical quantities can be measured on a spin-1/2 particle. A real physical quantity is described by a matrix

$$x_01 + x_1\Sigma_1 + x_2\Sigma_2 + x_3\Sigma_3$$

in which x_0 , x_1 , x_2 , and x_3 are real numbers.

2. Each real physical quantity has two possible outcomes. We will get one of these outcomes when we make the measurement.