QBism by von Baeyer

December 5, 2018

Cube factory

A precision tool factory produces iron cubes with edge length ≤ 2 cm. What is the probability that a cube has length ≤ 1 cm given that it was produced by that factory?

Van Frassen's point was that you could "naturally" chose between a uniform distribution of the side length, the face area, or the volume of the cube. Each choice of course yields a different answer.

Point is that it's not so easy to determine a probability distribution from simple information about the world.

from https://physics.stackexchange.com/questions/
414689/significance-of-cube-factory-paradox

Chances versus credences

Chances

- Smokers have a greater chance of getting cancer than non-smokers have.
- This coin toss is unbiased: it has equal chances of landing heads and tails.

Credences

- I think it will probably rain tonight.
- I'll bet you 4:1 that Pink Gin doesn't win the Derby.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

from D. H. Mellor, Probability: A Philosophical Introduction

Marcus Appleby's parable

Bob tosses a coin a hundred times, obtains a sequence of heads and tails that consists of about fifty heads and fifty tails in seemingly random order, and concludes that the coin is fair.

Bob must:

- assume coin tosses are independent,
- assume the probability of heads is the same for every toss, and
- calculate the likelihood of getting his particular sequence of 100 tosses for each assumed value of single-toss probability and choose the single-toss probability (hopefully 1/2) that maximizes that likelihood.

Cancer and testing

0.5% of the population has cancer

1.0% of tests are wrong

	cancer	no cancer	total
positive test	0.495%	0.995%	1.490%
negative test	0.005%	98.505%	98.510%
total	0.500%	99.500%	100.000%

 $\begin{array}{rcl} p(+) & \times & p(+ \rightarrow \odot) & = & p(\odot) & \times & p(\odot \rightarrow +) \\ 1.490\% & \times & p(+ \rightarrow \odot) & = & 0.500\% & \times & 99\% \end{array}$

 $p(+ \rightarrow \odot) = 33\%$

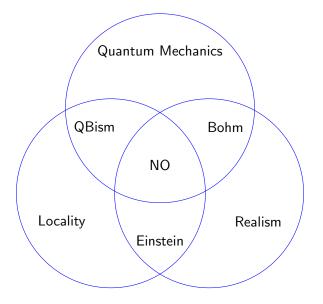
・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Bayes' law

$$p(I \rightarrow E) = \frac{p(E \rightarrow I)}{p(I)}p(E)$$

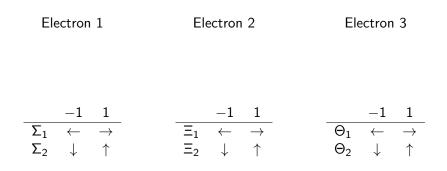
 \blacktriangleright p(E) is the *prior* probability

▶ $p(I \rightarrow E)$ is the *posterior* probability Notice that $\frac{p(E \rightarrow I)}{p(I)}$ could be greater than one (in which case our degree of belief in *E* increases) or less than one (in which case our degree of belief in *E* decreases).


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Cancer example

$$p(I \to E) = \frac{p(E \to I)}{p(I)}p(E)$$
$$33\% = \frac{99\%}{1.49\%}(0.5\%)$$


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Pick any two

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

3 entangled electrons

▲□▶ ▲圖▶ ▲匡▶ ▲匡▶ ― 匡 … のへで

Connecting von Baeyer to Jordan

- \blacktriangleright Ξ_1 has the definite value 1
- Θ₂ has the definite value 1

Showing that QM, locality, and realism cannot coexist

- Quantum mechanics says there is a state of three qubits in which
 - $\Sigma_1 \Xi_1 \Theta_2$ has the definite value 1,
 - $\Sigma_1 \Xi_2 \Theta_1$ has the definite value 1,
 - $\Sigma_2 \Xi_1 \Theta_1$ has the definite value 1, and
 - $\Sigma_2 \Xi_2 \Theta_2$ has the definite value -1.

(Notice that every pair of matrices commutes, so they can have definite values together.)

Locality and realism say that if

- $\Sigma_1 \Xi_1 \Theta_2$ has the definite value 1,
- $\Sigma_1 \Xi_2 \Theta_1$ has the definite value 1, and
- $\Sigma_2 \Xi_1 \Theta_1$ has the definite value 1, then
- $\Sigma_2 \Xi_2 \Theta_2$ has the definite value 1.

Assuming realism

 $\downarrow \rightarrow \downarrow \rightarrow \uparrow \leftarrow$

means

- Σ₂ has the definite value -1
- Σ₁ has the definite value 1
- \blacktriangleright Ξ_2 has the definite value -1
- Ξ₁ has the definite value 1
- \triangleright Θ_2 has the definite value 1
- \blacktriangleright Θ_1 has the definite value -1

Realism implies that all quantities have definite values

If Σ_1 , Σ_2 , Ξ_1 , Ξ_2 , Θ_1 , and Θ_2 are just variables that can be -1 or 1 (unlike in quantum theory, where they are matrices), then

$$(\Sigma_1 \Xi_1 \Theta_2)(\Sigma_1 \Xi_2 \Theta_1)(\Sigma_2 \Xi_1 \Theta_1) = \Sigma_2 \Xi_2 \Theta_2$$

Therefore, if the three things on the left are 1, then the thing on the right is 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

In a realist theory,

$$(\Sigma_1 \Xi_1 \Theta_2) (\Sigma_1 \Xi_2 \Theta_1) (\Sigma_2 \Xi_1 \Theta_1) = \Sigma_2 \Xi_2 \Theta_2$$

In Quantum Mechanics,

$$(\Sigma_1 \Xi_1 \Theta_2) (\Sigma_1 \Xi_2 \Theta_1) (\Sigma_2 \Xi_1 \Theta_1) = -\Sigma_2 \Xi_2 \Theta_2$$

GHZ state preparation

\rightarrow	\rightarrow	↑	can occur	
\leftarrow	\leftarrow	\uparrow	can occur	
\rightarrow	\leftarrow	\downarrow	can occur	
\leftarrow	\rightarrow	\downarrow	can occur	
\rightarrow	\rightarrow	↓	never occurs	
\leftarrow	\leftarrow	↓	never occurs	
\rightarrow	\leftarrow	\uparrow	never occurs	
\leftarrow	\rightarrow	\uparrow	never occurs	

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶ ◆□◆

64 cases

Assume locality and realism

$\uparrow \rightarrow$	$\uparrow \rightarrow$	$\uparrow \rightarrow$	ok
$\uparrow \rightarrow$	$\uparrow \rightarrow$	$\uparrow \leftarrow$	not possible
$\uparrow \rightarrow$	$\uparrow \rightarrow$	$\downarrow \rightarrow$	not possible
$\uparrow \rightarrow$	$\uparrow \rightarrow$	$\downarrow \leftarrow$	not possible
		-	
		•	

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

- 8 of 64 cases are ok
- ▶ 56 of 64 cases are not possible

Counting the cases

	without order	number of orders	with order
All 3 same	4	1	4
2 same, 1 different	12	3	36
All 3 different	4	6	24
Total cases	20		64

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

20 cases if we discount particle order

$\uparrow \rightarrow$	$\uparrow \rightarrow$	$\uparrow \leftarrow$	not possible
$\uparrow \rightarrow$	$\uparrow \rightarrow$	$\downarrow \rightarrow$	not possible
$\uparrow \rightarrow$	$\uparrow \rightarrow$	$\downarrow \leftarrow$	not possible
$\uparrow \leftarrow$	$\uparrow \leftarrow$	$\uparrow \rightarrow$	not possible
$\uparrow \leftarrow$	$\uparrow \leftarrow$	$\downarrow \rightarrow$	not possible
$\uparrow \leftarrow$	$\uparrow \leftarrow$	$\downarrow \leftarrow$	not possible
$\downarrow \rightarrow$	$\downarrow \rightarrow$	$\downarrow \leftarrow$	not possible
$\downarrow \rightarrow$	$\downarrow \rightarrow$	$\uparrow \rightarrow$	not possible
$\downarrow \rightarrow$	$\downarrow \rightarrow$	$\uparrow \leftarrow$	ok
$\downarrow \leftarrow$	$\downarrow \leftarrow$	$\downarrow \rightarrow$	not possible
$\downarrow \leftarrow$	$\downarrow \leftarrow$	$\uparrow \rightarrow$	ok
$\downarrow \leftarrow$	$\downarrow \leftarrow$	$\uparrow \leftarrow$	not possible

$\uparrow \rightarrow$	$\uparrow \rightarrow$	$\uparrow \rightarrow$	ok
$\uparrow \leftarrow$	$\uparrow \leftarrow$	$\uparrow \leftarrow$	ok
$\downarrow \rightarrow$	$\downarrow \rightarrow$	$\downarrow \rightarrow$	not possible
$\downarrow \leftarrow$	$\downarrow \leftarrow$	$\downarrow \leftarrow$	not possible
$\uparrow \rightarrow$	$\uparrow \leftarrow$	$\downarrow \rightarrow$	not possible
$\uparrow \rightarrow$	$\uparrow \leftarrow$	$\downarrow \leftarrow$	not possible
$\uparrow \rightarrow$	$\downarrow \leftarrow$	$\downarrow \rightarrow$	not possible
$\uparrow \leftarrow$	$\downarrow \leftarrow$	$\downarrow \rightarrow$	not possible

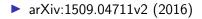
4 of 20 cases follow the GHZ rule

$\uparrow \rightarrow$	$\uparrow \rightarrow$	$\uparrow \rightarrow$	ok
$\uparrow \leftarrow$	$\uparrow \leftarrow$	$\uparrow \leftarrow$	ok
$\downarrow \rightarrow$	$\downarrow \rightarrow$	$\uparrow \leftarrow$	ok
$\downarrow \leftarrow$	$\downarrow \leftarrow$	$\uparrow \rightarrow$	ok

- none of these are UUD
- first two are UUU, last two are DDU

If realism demand definite values for all quantities, and QM represents quantities by matrices, isn't that already a contradiction?

Interpretations of Quantum Mechanics


Polkinghorne	von Baeyer
Irrelevance	
Large systems	Copenhagen
New physics	Spontaneous Collapse
Consciousness	
Many worlds	Many-Worlds
Determinism	Pilot-Wave
	QBism

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Adan Cabello's classification of interpretations

	ψ -Ontic	$\psi ext{-}Epistemic$
	Bohmian mechanics [10, 11]	Einstein [19]
Tunal	Many worlds [12, 13]	Ballentine [20]
Type-I	Modal [14, 15]	Consistent histories [21, 22]
(intrinsic realism)	Bell's "beables" [16]	Spekkens [23]
	Collapse theories [*] [17, 18]	

	About knowledge	About belief
Type-II (participatory realism)	Copenhagen [24, 25] Wheeler [26, 27] Relational [28, 29] Zeilinger [30, 3] No "interpretation" [31] Brukner [32]	QBism [33, 34, 35]

Adan Cabello's classification of interpretations

- Type-I interpretations are defined as those in which the probabilities of measurement outcomes are determined by intrinsic properties of the observed system.
- Type-II interpretations are defined as those which do not view the probabilities of measurement outcomes of quantum theory as determined by intrinsic properties of the observed system. Type-II interpretations do not deny the existence of an objective world but, according to them, quantum theory does not deal directly with intrinsic properties of the observed system, but with the experiences an observer or agent has of the observed system.

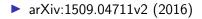
Type-I interpretations

Type-I interpretations can be

- "ψ-ontic" [36], if they view the quantum state as an intrinsic property of the observed system, or
- "ψ-epistemic" [36], if they view the quantum state as representing knowledge of an underlying objective reality in a sense somewhat analogous to that in which a state in classical statistical mechanics assigns a probability distribution to points in phase space.

Type-II interpretations

Type-II interpretations can be


- "about knowledge" if they view the quantum state as an observer's knowledge about the results of future experiments, or
- "about belief" if they view the quantum state as an agent's expectations about the results of future actions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Adan Cabello's classification of interpretations

	ψ -Ontic	$\psi ext{-}Epistemic$
	Bohmian mechanics [10, 11]	Einstein [19]
Tunal	Many worlds [12, 13]	Ballentine [20]
Type-I	Modal [14, 15]	Consistent histories [21, 22]
(intrinsic realism)	Bell's "beables" [16]	Spekkens [23]
	Collapse theories [*] [17, 18]	

	About knowledge	About belief
Type-II (participatory realism)	Copenhagen [24, 25] Wheeler [26, 27] Relational [28, 29] Zeilinger [30, 3] No "interpretation" [31] Brukner [32]	QBism [33, 34, 35]

Four Quantum Mysteries

Quantization

- Why do things come in lumps? (Photons, but also Stern-Gerlach outcomes)
- Why can Σ₁ have only the values -1 and 1?
- Wave/Particle Duality
 - Why do electrons behave sometimes like waves and sometimes like particles?

Feynman called this "the only mystery", but others disagree.

Quantum Entanglement

Why can we not have both locality and realism in a theory?

Interpretation

- What is quantum mechanics trying to tell us about the world?
- Is the world non-local? (Some say yes; some say no.)
- Are there objects with real properties? (Some say yes; some say no.)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Hensen, B. *et al.*, Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres, *Nature* **526**, 682–686 (2015).
- Gisin, N. Non-realism: Deep thought or a soft option? *Found. Phys.* **42**, 80–85 (2012).
- Zeilinger, A. The message of the quantum. Nature 438, 743 (2005).
- Polkinghorne, J. Physics and theology. *Europhysics News* 45, No. 1, 28–31 (2014).
- Mermin, N. D. Quantum mechanics: Fixing the shifty split. Phys. Today 65, No. 7, 8–10 (2012).
- Belinfante, F. J. *A Survey of Hidden-Variables Theories* (Pergamon Press, New York, 1973).
- Jammer, M. The Philosophy of Quantum Mechanics: The Interpretations of Quantum Mechanics in Historical Perspective (Wiley, New York, 1974).