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Cube factory

A precision tool factory produces iron cubes with edge
length ≤ 2 cm. What is the probability that a cube has
length ≤ 1 cm given that it was produced by that factory?

Van Frassen’s point was that you could “naturally” chose between
a uniform distribution of the side length, the face area, or the
volume of the cube. Each choice of course yields a different
answer.

I Point is that it’s not so easy to determine a probability
distribution from simple information about the world.

from https://physics.stackexchange.com/questions/

414689/significance-of-cube-factory-paradox

https://physics.stackexchange.com/questions/414689/significance-of-cube-factory-paradox
https://physics.stackexchange.com/questions/414689/significance-of-cube-factory-paradox


Chances versus credences

Chances

I Smokers have a greater
chance of getting cancer
than non-smokers have.

I This coin toss is unbiased: it
has equal chances of landing
heads and tails.

Credences

I I think it will probably rain
tonight.

I I’ll bet you 4:1 that Pink Gin
doesn’t win the Derby.

from D. H. Mellor, Probability: A Philosophical Introduction



Marcus Appleby’s parable

Bob tosses a coin a hundred times, obtains a sequence of
heads and tails that consists of about fifty heads and fifty
tails in seemingly random order, and concludes that the
coin is fair.

Bob must:

I assume coin tosses are independent,

I assume the probability of heads is the same for every toss, and

I calculate the likelihood of getting his particular sequence of
100 tosses for each assumed value of single-toss probability
and choose the single-toss probability (hopefully 1/2) that
maximizes that likelihood.



Cancer and testing

I 0.5% of the population has cancer

I 1.0% of tests are wrong

cancer no cancer total

positive test 0.495% 0.995% 1.490%
negative test 0.005% 98.505% 98.510%

total 0.500% 99.500% 100.000%

p(+) × p(+→ /) = p(/) × p(/→ +)
1.490% × p(+→ /) = 0.500% × 99%

p(+→ /) = 33%



Bayes’ law

p(I → E ) =
p(E → I )

p(I )
p(E )

I p(E ) is the prior probability

I p(I → E ) is the posterior probability

Notice that p(E→I )
p(I ) could be greater than one (in which case our

degree of belief in E increases) or less than one (in which case our
degree of belief in E decreases).



Cancer example

p(I → E ) =
p(E → I )

p(I )
p(E )

33% =
99%

1.49%
(0.5%)



Pick any two

Quantum Mechanics

Locality Realism

BohmQBism

Einstein

NO



3 entangled electrons

Electron 1

−1 1

Σ1 ← →
Σ2 ↓ ↑

Electron 2

−1 1

Ξ1 ← →
Ξ2 ↓ ↑

Electron 3

−1 1

Θ1 ← →
Θ2 ↓ ↑



Connecting von Baeyer to Jordan

→→↑

means

I Σ1 has the definite value 1

I Ξ1 has the definite value 1

I Θ2 has the definite value 1

−1 1

Σ1 ← →
Σ2 ↓ ↑

−1 1

Ξ1 ← →
Ξ2 ↓ ↑

−1 1

Θ1 ← →
Θ2 ↓ ↑



Showing that QM, locality, and realism cannot coexist

I Quantum mechanics says there is a state of three qubits in
which
I Σ1Ξ1Θ2 has the definite value 1,
I Σ1Ξ2Θ1 has the definite value 1,
I Σ2Ξ1Θ1 has the definite value 1, and
I Σ2Ξ2Θ2 has the definite value −1.

(Notice that every pair of matrices commutes, so they can
have definite values together.)

I Locality and realism say that if
I Σ1Ξ1Θ2 has the definite value 1,
I Σ1Ξ2Θ1 has the definite value 1, and
I Σ2Ξ1Θ1 has the definite value 1, then
I Σ2Ξ2Θ2 has the definite value 1.



Assuming realism

↓→ ↓→ ↑←

means

I Σ2 has the definite value −1

I Σ1 has the definite value 1

I Ξ2 has the definite value −1

I Ξ1 has the definite value 1

I Θ2 has the definite value 1

I Θ1 has the definite value −1

−1 1

Σ1 ← →
Σ2 ↓ ↑

−1 1

Ξ1 ← →
Ξ2 ↓ ↑

−1 1

Θ1 ← →
Θ2 ↓ ↑



Realism implies that all quantities have definite values

If Σ1, Σ2, Ξ1, Ξ2, Θ1, and Θ2 are just variables that can be −1 or
1 (unlike in quantum theory, where they are matrices), then

(Σ1Ξ1Θ2)(Σ1Ξ2Θ1)(Σ2Ξ1Θ1) = Σ2Ξ2Θ2

Therefore, if the three things on the left are 1, then the thing on
the right is 1.



Realism vs. QM

I In a realist theory,

(Σ1Ξ1Θ2)(Σ1Ξ2Θ1)(Σ2Ξ1Θ1) = Σ2Ξ2Θ2

I In Quantum Mechanics,

(Σ1Ξ1Θ2)(Σ1Ξ2Θ1)(Σ2Ξ1Θ1) = −Σ2Ξ2Θ2



GHZ state preparation

→ → ↑ can occur

← ← ↑ can occur

→ ← ↓ can occur

← → ↓ can occur

→ → ↓ never occurs

← ← ↓ never occurs

→ ← ↑ never occurs

← → ↑ never occurs



64 cases

I Assume locality and realism

↑→ ↑→ ↑→ ok

↑→ ↑→ ↑← not possible

↑→ ↑→ ↓→ not possible

↑→ ↑→ ↓← not possible
...

I 8 of 64 cases are ok

I 56 of 64 cases are not possible



Counting the cases

without order number of orders with order

All 3 same 4 1 4
2 same, 1 different 12 3 36
All 3 different 4 6 24

Total cases 20 64



20 cases if we discount particle order

↑→ ↑→ ↑→ ok

↑← ↑← ↑← ok

↓→ ↓→ ↓→ not possible

↓← ↓← ↓← not possible

↑→ ↑← ↓→ not possible

↑→ ↑← ↓← not possible

↑→ ↓← ↓→ not possible

↑← ↓← ↓→ not possible

↑→ ↑→ ↑← not possible

↑→ ↑→ ↓→ not possible

↑→ ↑→ ↓← not possible

↑← ↑← ↑→ not possible

↑← ↑← ↓→ not possible

↑← ↑← ↓← not possible

↓→ ↓→ ↓← not possible

↓→ ↓→ ↑→ not possible

↓→ ↓→ ↑← ok

↓← ↓← ↓→ not possible

↓← ↓← ↑→ ok

↓← ↓← ↑← not possible



4 of 20 cases follow the GHZ rule

↑→ ↑→ ↑→ ok

↑← ↑← ↑← ok

↓→ ↓→ ↑← ok

↓← ↓← ↑→ ok

I none of these are UUD

I first two are UUU, last two are DDU



QM and realism

If realism demand definite values for all quantities, and QM
represents quantities by matrices, isn’t that already a
contradiction?



Interpretations of Quantum Mechanics

Polkinghorne von Baeyer

Irrelevance
Large systems Copenhagen
New physics Spontaneous Collapse

Consciousness
Many worlds Many-Worlds
Determinism Pilot-Wave

QBism



Adan Cabello’s classification of interpretations

ψ-Ontic ψ-Epistemic

Type-I
(intrinsic realism)

Bohmian mechanics [10, 11] Einstein [19]
Many worlds [12, 13] Ballentine [20]
Modal [14, 15] Consistent histories [21, 22]
Bell’s “beables” [16] Spekkens [23]
Collapse theories∗ [17, 18]

About knowledge About belief

Type-II
(participatory realism)

Copenhagen [24, 25] QBism [33, 34, 35]
Wheeler [26, 27]
Relational [28, 29]
Zeilinger [30, 3]
No “interpretation” [31]
Brukner [32]

I arXiv:1509.04711v2 (2016)



Adan Cabello’s classification of interpretations

I Type-I interpretations are defined as those in which the
probabilities of measurement outcomes are determined by
intrinsic properties of the observed system.

I Type-II interpretations are defined as those which do not view
the probabilities of measurement outcomes of quantum theory
as determined by intrinsic properties of the observed system.
Type-II interpretations do not deny the existence of an
objective world but, according to them, quantum theory does
not deal directly with intrinsic properties of the observed
system, but with the experiences an observer or agent has of
the observed system.



Type-I interpretations

Type-I interpretations can be

I “ψ-ontic” [36], if they view the quantum state as an intrinsic
property of the observed system, or

I “ψ-epistemic” [36], if they view the quantum state as
representing knowledge of an underlying objective reality in a
sense somewhat analogous to that in which a state in classical
statistical mechanics assigns a probability distribution to
points in phase space.



Type-II interpretations

Type-II interpretations can be

I “about knowledge” if they view the quantum state as an
observer’s knowledge about the results of future experiments,
or

I “about belief” if they view the quantum state as an agent’s
expectations about the results of future actions.



Adan Cabello’s classification of interpretations

ψ-Ontic ψ-Epistemic

Type-I
(intrinsic realism)

Bohmian mechanics [10, 11] Einstein [19]
Many worlds [12, 13] Ballentine [20]
Modal [14, 15] Consistent histories [21, 22]
Bell’s “beables” [16] Spekkens [23]
Collapse theories∗ [17, 18]

About knowledge About belief

Type-II
(participatory realism)

Copenhagen [24, 25] QBism [33, 34, 35]
Wheeler [26, 27]
Relational [28, 29]
Zeilinger [30, 3]
No “interpretation” [31]
Brukner [32]

I arXiv:1509.04711v2 (2016)



Four Quantum Mysteries

I Quantization
I Why do things come in lumps? (Photons, but also

Stern-Gerlach outcomes)
I Why can Σ1 have only the values −1 and 1?

I Wave/Particle Duality
I Why do electrons behave sometimes like waves and sometimes

like particles?
I Feynman called this “the only mystery”, but others disagree.

I Quantum Entanglement
I Why can we not have both locality and realism in a theory?

I Interpretation
I What is quantum mechanics trying to tell us about the world?
I Is the world non-local? (Some say yes; some say no.)
I Are there objects with real properties? (Some say yes; some

say no.)
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Dakić, B. & Brukner, Č. Quantum theory and beyond: Is
entanglement special? In Deep Beauty. Understanding the
Quantum World through Mathematical Innovation, edited by
H. Halvorson (Cambridge University Press, New York, 2011),
pp. 365–392.

Masanes, L. & Müller, M. P. A derivation of quantum theory
from physical requirements. New J. Phys. 13, 063001 (2011).

Chiribella, G., D’Ariano, G. M. & Perinotti, P. Informational
derivation of quantum theory. Phys. Rev. A 84, 012311 (2011).

Cabello, A. Simple explanation of the quantum violation of a
fundamental inequality. Phys. Rev. Lett. 110, 060402 (2013).

Barnum, H., Müller, M. P. & Ududec, C. Higher-order
interference and single-system postulates characterizing
quantum theory. New J. Phys. 16, 123029 (2014).

Chiribella, G. & Yuan, X. Measurement sharpness cuts
nonlocality and contextuality in every physical theory,
arXiv:1404.3348.


