Title: Pseudofree Finite Group Actions on 4-Manifolds.

Date and Venue: 04:30 PM April 04, 2025 - Franklin & Marshall College

Abstract: We prove several theorems about the pseudofree, locally linear and homologically trivial action of finite groups G on closed, connected, oriented 4-manifolds M with non-zero Euler characteristic ($\chi(M) \neq 0$). In this setting, the rank_p(G) ≤ 1 , for $p \geq 5$ prime and rank(G) ≤ 2 , for p = 2, 3 (by [1]).

- 1. If a non-trivial finite group G acts on M in the above way, then $b_1(M) = 0$, and if $b_2(M) \ge 3$, then G must be cyclic and acts semi-freely.
- 2. If $b_2(M) = 2$ and $G = \mathbb{Z}_2 \times \mathbb{Z}_2$, then M must have the same 2-local homology and intersection form as $S^2 \times S^2$. If $G = \mathbb{Z}_q \rtimes \mathbb{Z}_2$, q odd, is non-abelian, then M must have the same q-local homology as $S^2 \times S^2$.
- 3. If $b_2(M) = 1$ and $G = \mathbb{Z}_3 \times \mathbb{Z}_3$, then M must have the same 3-local homology and intersection form as \mathbb{CP}^2 . If $G = \mathbb{Z}_q \rtimes \mathbb{Z}_3$, q odd, $3 \nmid q$ is non-abelian, then M must have the same q-local homology as \mathbb{CP}^2 .
- 4. If $b_2(M) = 0$ and $G = \mathbb{Z}_q \rtimes \mathbb{Z}_{2^r}$, q odd, $r \ge 2$ is non-abelian, then M must have the same q-local homology as S^4 .

We combine these results into two main theorems: Theorem A and Theorem B in Chapter 1 of the thesis. These results strengthen the work done by Edmonds [2], and Hambleton and Pamuk [1]. We remark that for $b_2(M) \leq 2$ there are other examples of finite groups which can act in the above way (see [3] and section 2.4 of the thesis).

References

- Ian Hambleton and Semra Pamuk, Rank conditions for finite group actions on 4manifolds, Canadian Journal of Mathematics. Journal Canadien de Mathématiques 74 (2022), no. 2, 550–572. MR 4411001
- [2] Allan L. Edmonds, Homologically trivial group actions on 4-manifolds, arxiv:math/9809055 (1998).
- [3] Michael P. McCooey, Groups that act pseudofreely on $S^2 \times S^2$, Pacific Journal of Mathematics **230** (2007), no. 2, 381–408. MR 2309166