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Abstract
C. F. Gauss constructed coordinates on any surface in space so that
F = 0, that is, so that the coordinate directions were orthogonal in a
neighborhood. In 1984, Dennis DeTurck and Dean Yang showed the
existence of orthogonal coordinates on any Riemannian 3-manifold. They
also showed that, for dimensions at least 4, there is a curvature
obstruction to the existence of orthogonal coordinates, in that curvature
components of the form Rijkl , with all 4 indices distinct, will vanish if the
directions correspond to orthogonal coordinates.

Recently, Paul Gauduchon and Andrei Moroianu showed that there are no
orthogonal coordinates on CPn or HPn, with the standard metrics, if
n > 1. In the case of CP2, the curvature condition is inadequate to show
their result; a mysterious trick is used instead.

Today’s talk will focus on 4 (real)-dimensional Kähler manifolds, their
elegant and special curvature, and how the underlying complex-analytic
structure lies behind Gauduchon and Moroianu’s result, which reveals
further obstructions to the existence of orthogonal coordinates.



Curvature

Given a manifold M with Riemannian metric, gij :=
〈

∂
∂xi
, ∂
∂xj

〉
, B. Riemann

constructed the curvature tensor to measure the shape, or curvature, of
the space. Geometrically, this tensor gives the Gaussian curvature for each
2-dimensional direction plane at each point. The formulation begins with
the covariant derivative ∇X Y , measuring how a vector field Y deviates
from parallel as you move in the direction of a tangent vector X . What
accomplishes that is the expression, called the Riemann-Christoffel
curvature tensor, for each triple of vector fields X ,Y ,Z ,

RXY Z := ∇[X ,Y ]Z −∇X (∇Y Z ) +∇Y (∇X Z ) ,

from which you can compute the Gaussian curvature in the directions
spanned by X and Y by the “diagonal” terms ⟨RXY X ,Y ⟩ . The idea is that
this tensor gives the deviation from flatness, the geometry, of the space.



Orthogonal coordinates

A Riemannian manifold Mn with Riemannian metric ⟨ , ⟩ has orthogonal
coordinates {x1, . . . , xn} in a neighborhood U if, for each point x ∈ U,〈

∂
∂xi
, ∂
∂xj

〉
= 0 whenever i ̸= j . If each point of M has orthogonal

coordinates in some neighborhood, then we say that M has orthogonal
coordinates or supports orthogonal coordinates. Given an orthogonal

coordinate system, set ai :=
∥∥∥ ∂
∂xi

∥∥∥ =

√〈
∂
∂xi
, ∂
∂xi

〉
. The associated frame

{e1, . . . , en} is defined by setting ei :=
1
ai

∂
∂xi

. From the definitions of the
covariant derivative and Riemann curvature tensor, Gauduchon and
Moroianu show the following useful results.



Proposition
[Gauduchon and Moroianu] Let M be a Riemannian manifold with
orthogonal coordinates on a chart U, with associated frame {e1, . . . , en}.
Then,

1 If i ̸= j , then ∇ei ej =
1
ai

ej (ai) ei , so [ei , ej ] =
1
ai

ej (ai) ei − 1
aj

ei (aj) ej .
2 ∇ei ei = −

∑
j ̸=i

1
ai

ej (ai) ej .
3 For any i ̸= j ,

Rijij =
〈
Rei ej ei , ej

〉
= − 1

aj
eiei (aj)−

1
ai

ejej (ai)−
∑
l ̸=i ,j

(
1
ai

el (ai)
1
aj

el (aj)

)

Rijik =
〈
Rei ej ei , ek

〉
= − 1

ai
ejek (ai) +

1
ai

ej (ai)
1
aj

ek (aj) .

4 If i , j , k, l are all distinct,
〈
Rei ej ek , el

〉
= Rijkl = 0.



The algebra of curvature tensors

The space of all such algebraic curvature operators in dimension n is the
space Rn of symmetric homomorphisms of Λ2 (Rn) = Λ2 (T∗ (M, x)), with
the standard induced inner product on Λ2 (Rn), defined by
⟨R (v1 ∧ v2) , v3 ∧ v4⟩ =

〈
R(v1,v2)v3, v4

〉
, which, due to the identities of the

curvature tensor such as RXY = −RYX , gives a linear operator

R : Λ2 (Rn) → Λ2 (Rn)

which is symmetric.



Decomposition
SO(n) operates on this space induced from its natural action on Rn,
which, following Weyl, decomposes Rn into an orthogonal direct sum of
invariant subspaces:

Rn = I ⊕RIC0 ⊕W ⊕ S,

where:

I are all multiples of the identity operator,
for ρ : Rn → Rn ◦ Rn the Ricci contraction
⟨ρ (R) v ,w⟩ =

∑
⟨R (v ∧ ei) ,w ∧ ei⟩,RIC0 := ker (ρ)⊥ ∩ I⊥

corresponds to the trace-free portion of the Ricci tensor,
S := ker (b)⊥ are those tensors orthogonal to the kernel of the
Bianchi map b : Rn → Rn defined by
b (R)(v1,v2)

v3 = R(v1,v2)v3 + R(v2,v3)v1 + R(v3,v1)v2, and
W = ker (ρ) ∩ ker (b) is the Weyl tensor component.



Dimension 4
In dimension 4 this decomposition has a particularly simple form, due to
Atiyah-Hitchen-Singer and LeBrun. In that dimension the Hodge star
operator ⋆ : Λ2

(
R4) → Λ2

(
R4) is itself a curvature operator; in particular

it is a basis of the space S of operators orthogonal to ker (b). The
operator ⋆ is defined on any oriented orthonormal frame {e1, e2, e3, e4} by
⋆ (e1 ∧ e2) = e3 ∧ e4, ⋆ (e1 ∧ e3) = −e2 ∧ e4, and ⋆ (e1 ∧ e4) = e2 ∧ e3.
Since ⋆2 = Id , it decomposes Λ2

(
R4) into two 3-dimensional subspaces

Λ+
2
(
R4) and Λ−

2
(
R4) consisting of the ±1-eigenspaces of ⋆,

Λ+
2
(
R4) = Span {e1 ∧ e2 + e3 ∧ e4, e1 ∧ e3 − e2 ∧ e4, e1 ∧ e4 + e2 ∧ e3}

and

Λ−
2
(
R4) = Span {e1 ∧ e2 − e3 ∧ e4, e1 ∧ e3 + e2 ∧ e4, e1 ∧ e4 − e2 ∧ e3} .

For a curvature form R on an oriented 4-manifold M, its Weyl tensor
W (R) ∈ W, decomposes as W (R) = W+ (R) + W− (R), where
W+ (R) : Λ+

2
(
R4) → Λ+

2
(
R4) and W− (R) : Λ−

2
(
R4) → Λ−

2
(
R4) are the

orthogonal projections of W (R) onto the indicated subspaces. A manifold
is self-dual if W− (R) = 0, and anti-delf-dual if W+ (R) = 0.



Curvature structure
Given any oriented frame {e1, e2, e3, e4}, we will use the adapted frame,
writing Λ2

(
R4) = Λ+

2
(
R4)⊕ Λ−

2
(
R4),{

1√
2
(e1 ∧ e2 + e3 ∧ e4) ,

1√
2
(e1 ∧ e3 − e2 ∧ e4) ,

1√
2
(e1 ∧ e4 + e2 ∧ e3) ,

1√
2
(e1 ∧ e2 − e3 ∧ e4) ,

1√
2
(e1 ∧ e3 + e2 ∧ e4) ,

1√
2
(e1 ∧ e4 − e2 ∧ e3)

}
.

Proposition
Singer-Thorpe, AHS, LeBrun Any R ∈ R4 satisfying the Bianchi
identity decomposes into 3 × 3 blocks:

R =

[
W+ (R) + r

12 Id s (ρ (R0))

s (ρ (R0))
T W− (R) + r

12 Id

]
with respect to the adapted frame of any orthonormal frame {e1, . . . , e4},
where r = 2tr (R) is the scalar curvature r = tr (ρ (R)),
ρ (R0) = ρ (R)− r

4 I, and s is the right inverse of the Ricci projection ρ.
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Surfaces

On an oriented surface Σ, isothermal coordinates, coordinates so that the
metric is of the form g = eλ

(
dx2 + dy2) always exist. The beauty of

these coordinates is that they also give the notion of complex structure to
the surface; the tangent planes can be thought of as the complex
numbers, that is, there is a map J : T∗ (Σ, x) → T∗ (Σ, x) rotating each
vector by +π

2 (or multiplying by i). This map J is called an
almost-complex structure, and satisfies J2 = −Id . But, in isothermal
coordinates charts, that rotation angle is preserved by the differential of
those coordinates, which is exactly the Cauchy-Riemann equations, so the
coordinate transformations between two such charts is holomorphic,(

ϕ ◦ ψ−1)
∗ (JX ) = J

(
ϕ ◦ ψ−1)

∗ (X ) ,

or the almost-complex structure is integrable.



Higher dimensions

It is reasonable to ask whether these ideas always extend to higher
dimensions. That story becomes complicated. In dimension 3 or higher,
isothermal coordinates (called locally conformally flat in higher dimensions)
don’t usually exist. Dimension 3 is subtle, but in dimension 4 or higher the
obstruction to locally conformally flat metrics is the Weyl tensor.

In higher even dimensions, the existence of an almost-complex structure is
not guaranteed (S4 does not have one), and integrability, the existence of
holomorphic coordinate changes, is even more restrictive. Spaces which
are complex varieties inside complex projective space always are complex
manifolds, as are spaces like S3 × S1.



Kähler manifolds

A rich and elegant collection of complex manifolds, called Kähler
manifolds, are complex manifolds with a Riemannian metric ds2 = ⟨, ⟩
which is compatible with the complex structure, or is Hermitian, if
⟨JX , JY ⟩ = ⟨X ,Y ⟩, that is, if J is orthogonal. In addition, we want the
almost-complex structure to be integrable, and we add one more
condition, called the Kähler condition, that the Kähler form

ω (X ,Y ) = ⟨X , JY ⟩

is a closed 2-form. These two conditions are equivalent to the the almost
complex structure tensor being parallel, ∇J = 0. Kähler manifolds include
complex subvarieties of CPn, so we think of them as the most natural
complex manifolds.



Complex structure’s multiple realities
If M is a Kähler manifold, the complex-structure tensor J , given by
J (ei) = aijej , is an isometry on each T∗ (M,m) ∼= R4 satisfying J2 = −Id ,
so that J is also skew-symmetric. Identifying o (4) with Λ2

(
R4), J

becomes the bivector I ∈ Λ2
(
R4), the metric dual of the Kähler form,

I =
∑

i<j aijei ∧ ej . In dimension 4, the orientation is consistent with the
complex structure if I ∈ Λ+

2
(
R4), so for any oriented frame {e1, e2, e3, e4},

I = a12 (e1 ∧ e2 + e3 ∧ e4)+a13 (e1 ∧ e3 − e2 ∧ e4)+a14 (e1 ∧ e4 + e2 ∧ e3)
with a2

12 + a2
13 + a2

14 = 1. As an operator on the tangent space, then, in
dimension 4,

J (e1) = a12e2 + a13e3 + a14e4

J (e2) = −a12e1 + a14e3 − a13e4

J (e3) = −a13e1 − a14e2 + a12e4

J (e4) = −a14e1 + a13e2 − a12e3.
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J and ⋆ as curvature operators

J can be extended to an algebraic curvature operator
J : Λ2

(
R4) → Λ2

(
R4) by J (v ∧ w) := J (v) ∧ J (w).

J : Λ2
(
R4) → Λ2

(
R4) Like the Hodge star operator ⋆, J is idempotent,

J2 = Id , with a 4-dimensional eigenspace for the eigenvalue 1, and a
2-dimensional eigenspace for the eigenvalue −1. Since J⋆ = ⋆J , J and ⋆
are simultaneously diagonalizable. J |Λ−

2 (R4) : Λ
−
2
(
R4) → Λ−

2
(
R4) is the

identity, and J (I) = I, where I is as above. The orthogonal complement of
I within Λ+

2
(
R4) is the (−1)-eigenspace, spanned by

a13 (e1 ∧ e2 + e3 ∧ e4)− a12 (e1 ∧ e3 − e2 ∧ e4) and
a14 (e1 ∧ e2 + e3 ∧ e4)− a12 (e1 ∧ e4 + e2 ∧ e3).



Kähler curvature operators

If R is a curvature operator corresponding to a Kähler 4-manifold, then
b (R) = 0 and

RJ = JR = R,

so that in the (−1)-eigenspace of J , I⊥ ∩ Λ+
2
(
R4) = {ξ| Jξ = −ξ} ,

−R (ξ) = R (Jξ) = R (ξ), so R (ξ) = 0.

The conditions for R to be Kähler then become simply

0 = R (a12 (e1 ∧ e3 − e2 ∧ e4)− a13 (e1 ∧ e2 + e3 ∧ e4)) , and
0 = R (a12 (e1 ∧ e4 + e2 ∧ e3)− a14 (e1 ∧ e2 + e3 ∧ e4)) ,



Kähler-adapted frame

Re-write the curvature tensor R with respect to this frame: 1√
2

I, a13√
2
(
a2

12 + a2
13
) (e1 ∧ e2 + e3 ∧ e4)−

a12√
2
(
a2

12 + a2
13
) (e1 ∧ e3 − e2 ∧ e4) ,

a14√
2
(
a2

12 + a2
14
) (e1 ∧ e2 + e3 ∧ e4)−

a12√
2
(
a2

12 + a2
14
) (e1 ∧ e4 + e2 ∧ e3) ,

1√
2
(e1 ∧ e2 − e3 ∧ e4) ,

1√
2
(e1 ∧ e3 + e2 ∧ e4) ,

1√
2
(e1 ∧ e4 − e2 ∧ e3)

}
.

The second and third vectors are a basis of the −1-eigenspace of J .



Notation

Set, for all i , j

ρij = ρ (R)ij =
∑
k ̸=i ,j

Rikjk ,

the components of the Ricci tensor, and, with k1 < k2 and i < j

ρ̂ij = Rik1jk1 − Rik2jk2 ,

which correspond to the components of the Weyl tensor (in dimension 4).



R

R =



r
4 0 0 1

2a14
(ρ24 − ρ13)

1
2a12

(ρ23 − ρ14)
1

2a13
(ρ34 − ρ12)

0 0 0 0 0 0
0 0 0 0 0 0

a2
12r
4 − 2R1234

1
2 (ρ̂23 − ρ̂14)

1
2 (ρ̂24 + ρ̂13)

T 1
2 (ρ̂23 − ρ̂14)

a2
13r
4 + 2R1324

1
2 (ρ̂34 − ρ̂12)

1
2 (ρ̂24 + ρ̂13)

1
2 (ρ̂34 − ρ̂12)

a2
14r
4 − 2R2314





R

R =


r
4

1
2a14

(ρ24 − ρ13)
1

2a12
(ρ23 − ρ14)

1
2a13

(ρ34 − ρ12)
a2

12r
4 − 2R1234

1
2 (ρ̂23 − ρ̂14)

1
2 (ρ̂24 + ρ̂13)

T 1
2 (ρ̂23 − ρ̂14)

a2
13r
4 + 2R1324

1
2 (ρ̂34 − ρ̂12)

1
2 (ρ̂24 + ρ̂13)

1
2 (ρ̂34 − ρ̂12)

a2
14r
4 − 2R2314





Fubini-Study metric on CP2

As an example, for any frame, the curvature of the standard Fubini-Study
metric of complex projective 2-space has the form

R =


6 0 0 0
0 6a2

12 − 2R1234 0 0
0 0 6a2

13 + 2R1324 0
0 0 0 6a2

14 − 2R2314



0 =


6 0 0 0
0 2 0 0
0 0 2 0
0 0 0 2

 .



Product metric

A simple example of a space which supports orthogonal coordinates is a
(local) Riemannian product of two Riemann surfaces Σ1 and Σ2 of
Gaussian curvatures r1 and r2, respectively. With respect to the obvious
unitary frame with {e1, e2}, resp., {e3, e4} being frames of the two
surfaces,

R =


r1+r2

2
r1−r2

2 0 0
r1−r2

2
r1+r2

2 0 0
0 0 0 0
0 0 0 0

 ,



Orthogonal coordinates and Kähler 4-manifolds
Now we assume that M4 is a Kähler manifold, and that it supports
orthogonal coordinates. The only thing that changes in the expression of
the curvature operator, using a frame associated to the orthogonal
coordinates, is that the terms Rijkl vanish when all four indices are distinct.

R =


r
4

1
2a14

(ρ24 − ρ13)
1

2a12
(ρ23 − ρ14)

1
2a13

(ρ34 − ρ12)
a2

12r
4

1
2 (ρ̂23 − ρ̂14)

1
2 (ρ̂24 + ρ̂13)

T 1
2 (ρ̂23 − ρ̂14)

a2
13r
4

1
2 (ρ̂34 − ρ̂12)

1
2 (ρ̂24 + ρ̂13)

1
2 (ρ̂34 − ρ̂12)

a2
14r
4


However, beyond these curvature conditions, the condition that the Kähler
form be parallel, ∇J = 0, or, equivalently,

∇X (JY ) = J∇X Y

is stronger.
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∇J = 0
If M has orthogonal coordinates as above, with frame ei =

1
ai

∂
∂xi

, ∇J = 0
is equivalent to

a1e1

 a12
a13
a14

 =

 e2 (a1)
e3 (a1)
e4 (a1)

×

 a12
a13
a14


a2e2

 a12
a13
a14

 =

 −e1 (a2)
−e4 (a2)
e3 (a2)

×

 a12
a13
a14


a3e3

 a12
a13
a14

 =

 e4 (a3)
−e1 (a3)
−e2 (a3)

×

 a12
a13
a14


a4e4

 a12
a13
a14

 =

 −e3 (a4)
e2 (a4)
−e1 (a4)

×

 a12
a13
a14

 .



Uniqueness of J
If a nontrivial M supports orthogonal coordinates, then, of course, there
are several such coordinate systems, which overlap. A coordinate change
from one orthogonal coordinate system to another would not seem to
preserve in any way the complex structure. However, on a non-flat
manifold the complex structure will be preserved (The change of
coordinates may not be holomorphic, but is so up to “scaling.”)

Definition
A hyperkähler manifold is a Riemannian manifold with 3 integrable almost
complex structures I, J , and K = IJ , for which the metric is Kähler with
respect to each, and so that I2 = J2 = K 2 = −Id . (E. Calabi) Think of
the quaternions.

Theorem
If there are two distinct complex structure tensors J ,K on an orthogonal
coordinate chart that both correspond to Kähler structures in the
neighborhood, then the metric will be hyperkähler on that chart.
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Proof.

If both J and K satisfy the conditions, with K given by

 b12
b13
b14

, then,

using those equations, it is easy to show that

 a12
a13
a14

 ·

 b12
b13
b14

 is

constant. Then, you can construct yet another Kähler structure L given by c12
c13
c14

 =

 b12
b13
b14

−

 a12
a13
a14

 ·

 b12
b13
b14

 a12
a13
a14

/
∥∥, and the

vector

 a12
a13
a14

×

 c12
c13
c14

 will also correspond to a Kähler structure,

corresponding to JL, which then will be hyperkähler.



Hyperkähler

Theorem
No Kähler metric on a manifold M4 supporting orthogonal coordinates is
hyperkähler, unless it is flat. Thus no K3 surface supports orthogonal
coordinates.

Corollary
If M4 is a nowhere flat Kähler manifold with orthogonal coordinates, the
complex structure is uniquely determined on each coordinate chart.
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Constants

Theorem
If M is a 4-dimensional Kähler manifold with orthogonal coordinates, and
if the coefficients aij of the complex structure tensor J with respect to the
associated frame {e1, e2, e3, e4} are constant, then necessarily M is either
locally a product of Riemann surfaces, or it is flat.

Proof.
Gauduchon and Moroiano show this result in a special case
(a12 = a13 = a14 = 1√

3); a similar proof holds for any constants.
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Self dual
Theorem
If M4 is a self-dual Kähler 4-manifold which supports orthogonal
coordinates, then M is flat, or a product Σr × Σ−r of constant curvature
Riemann surfaces.

Proof.
Assuming that M is self-dual, then with respect to a frame {e1, e2, e3, e4}
from an orthogonal coordinate chart,

0 = W− (R)

=

 r
4
(
a2

12 − 1
3
) 1

2 (ρ̂23 − ρ̂14)
1
2 (ρ̂24 + ρ̂13)

1
2 (ρ̂23 − ρ̂14)

r
4
(
a2

13 − 1
3
) 1

2 (ρ̂34 − ρ̂12)
1
2 (ρ̂24 + ρ̂13)

1
2 (ρ̂34 − ρ̂12)

r
4
(
a2

14 − 1
3
)


so that, either r = 0, or a2

12 = a2
13 = a2

14 = 1
3 . In the first case, the

manifold must be conformally flat, thus either flat or a product of
Riemann surfaces with opposite constant curvatures. The conclusion then
follows from the previous result.
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CP2

Corollary
CP2 with the Fubini-Study metric does not support orthogonal
coordinates.

Proof.
This is the result of Gauduchon and Moroianu, and follows by the fact
that CP2 is indeed self-dual.
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CP2

Fact
CP2 with the Fubini-Study metric does admit a frame {e1, e2, e3, e4} so
that R1234 = R1324 = R1423 = 0.

Proof.
Start with a unitary frame {u1, u2 = Ju1, u3, u4 = Ju2}. Then

e1 = u1

e2 =
1√
3

u2 +
1√
2

u3 +
1√
6

u4

e3 =
1√
3

u2 −
1√
2

u3 +
1√
6

u4

e4 =
1√
3

u2 −
√

2√
3

u4.

This gives a frame {e1, e2, e3, e4} on CP2, which satisfies the conditions
a12 = a13 = a14 = 1√

3 for the complex structure tensor with respect to
that frame, and Rijkl = 0 whenever all indices are distinct.
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