Gerstenhaber-Schack Bialgebras

Presented by Ron Umble Professor Emeritus, MU

TETRAHEDRAL GEOMETRY-TOPOLOGY SEMINAR

October 4, 2024

メロメ メ都メ メミメ メミメ

 $2Q$

隱

The Associahedron K_n

Let $n \ge 2$. The associahedron K_n is an $(n-2)$ -dimensional contractible polytope constructed by J. Stasheff (1963) whose faces are indexed by up-rooted planar trees with n leaves

The Associahedron K_4

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024
په ۱۳۶۰ - ۱۴۶۰ - ۱۴۶۰ - ۱۴۸

 QQ

Let $2 \leq k \leq \infty$. An A_k -**algebra** consists of

Let $2 \leq k \leq \infty$. An A_k -**algebra** consists of

• a dg vector space (A, d) , where $|d| = +1$

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024

Let $2 \leq k \leq \infty$. An A_k -**algebra** consists of

- a dg vector space (A, d) , where $|d| = +1$
- multilinear operations $\{\omega_n: A^{\otimes n} \to A \mid n \geq 2\},\$

where $|\omega_n| = 2 - n$ and $n \leq k$ when $k < \infty$

Let $2 \leq k \leq \infty$. An A_k -**algebra** consists of

- a dg vector space (A, d) , where $|d| = +1$
- multilinear operations $\{\omega_n: A^{\otimes n} \to A \mid n \geq 2\},\$

where $|\omega_n| = 2 - n$ and $n \leq k$ when $k < \infty$

 \bullet structure maps $\{\alpha_n : (CC_*(K_n), \partial) \to (Hom(A^{\otimes n}, A), ∇)\},$

where
$$
\alpha_n
$$
 $\left(\bigotimes_{n=1}^{\infty} \right) = \omega_n$ and $\nabla f = d \circ f + f \circ d^{\otimes}$

(signs ignored)

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024

Let $2 \leq k \leq \infty$. An A_k -**algebra** consists of

- a dg vector space (A, d) , where $|d| = +1$
- multilinear operations $\{\omega_n: A^{\otimes n} \to A \mid n \geq 2\},\$

where $|\omega_n| = 2 - n$ and $n \leq k$ when $k < \infty$

 \bullet structure maps $\{\alpha_n : (CC_*(K_n), \partial) \to (Hom(A^{\otimes n}, A), ∇)\},$

where
$$
\alpha_n \left(\underbrace{\bigwedge_{n=1}^{n} }_{n} \right) = \omega_n
$$
 and $\nabla f = d \circ f + f \circ d^{\otimes}$
(signs ignored)

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024

An A_k -algebra is **strict** if $\nabla \omega_n = 0$ for all *n*

Let $2 \leq k \leq \infty$. An A_k -**algebra** consists of

- a dg vector space (A, d) , where $|d| = +1$
- multilinear operations $\{\omega_n: A^{\otimes n} \to A \mid n \geq 2\},\$

where $|\omega_n| = 2 - n$ and $n \leq k$ when $k < \infty$

 \bullet structure maps $\{\alpha_n : (CC_*(K_n), \partial) \to (Hom(A^{\otimes n}, A), ∇)\},$

where
$$
\alpha_n
$$
 $\left(\bigotimes_{n=1}^{\infty} \right) = \omega_n$ and $\nabla f = d \circ f + f \circ d^{\otimes}$

(signs ignored)

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024

An A_k -algebra is **strict** if $\nabla \omega_n = 0$ for all *n*

• Strict A_3 -algebras are associative

The Coassociahedron $Kⁿ$

Let $n \geq 2$. As a polytope, $K^n \cong K_n$ with faces indexed by down-rooted planar trees with n leaves

The Coassociahedron K^4

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024

Let $2 \leq k \leq \infty$. An A_k -**coalgebra** consists of

Let $2 \leq k \leq \infty$. An A_k -**coalgebra** consists of

• a dg vector space (A, d) , where $|d| = +1$

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024

Let $2 \leq k \leq \infty$. An A_k -**coalgebra** consists of

- a dg vector space (A, d) , where $|d| = +1$
- multilinear operations $\{\omega^n : A \to A^{\otimes n} \mid n \geq 2\},\$

where $|\omega^n|=2-n$ and $n\leq k$ when $k<\infty$

Let $2 \leq k \leq \infty$. An A_k -**coalgebra** consists of

- a dg vector space (A, d) , where $|d| = +1$
- multilinear operations $\{\omega^n : A \to A^{\otimes n} \mid n \geq 2\},\$

where $|\omega^n|=2-n$ and $n\leq k$ when $k<\infty$

• structure maps $\{\alpha^n: (CC_*(K^n), \partial) \to (Hom(A, A^{\otimes n}), \nabla)\}\,$

where
$$
\alpha^n \left(\underbrace{\sqrt[n]{\psi'}} \right) = \omega^n
$$
 and $\nabla f = d^{\otimes} \circ f + f \circ d$

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024
And American American American

Let $2 \leq k \leq \infty$. An A_k -**coalgebra** consists of

- a dg vector space (A, d) , where $|d| = +1$
- multilinear operations $\{\omega^n : A \to A^{\otimes n} \mid n \geq 2\},\$

where $|\omega^n|=2-n$ and $n\leq k$ when $k<\infty$

• structure maps $\{\alpha^n: (CC_*(K^n), \partial) \to (Hom(A, A^{\otimes n}), \nabla)\}\,$ where $\alpha^n\left(\frac{n}{\sqrt[n]{\sqrt{x}}}\right)=a$ *n* $\left\{\right\}$ $=\omega^n$ and $\nabla f=d^{\otimes}\circ f+f\circ d$

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024

An A_k -coalgebra is **strict** if $\nabla \omega^n = 0$ for all n

Let $2 \leq k \leq \infty$. An A_k -**coalgebra** consists of

- a dg vector space (A, d) , where $|d| = +1$
- multilinear operations $\{\omega^n : A \to A^{\otimes n} \mid n \geq 2\},\$

where $|\omega^n|=2-n$ and $n\leq k$ when $k<\infty$

• structure maps $\{\alpha^n: (CC_*(K^n), \partial) \to (Hom(A, A^{\otimes n}), \nabla)\}\,$ where $\alpha^n\left(\frac{n}{\sqrt[n]{\sqrt{x}}}\right)=a$ *n* $\left\{\right\}$ $=\omega^n$ and $\nabla f=d^{\otimes}\circ f+f\circ d$

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024

An A_k -coalgebra is **strict** if $\nabla \omega^n = 0$ for all n

• Strict A₃-coalgebras are coassociative

The Biassociahedron KK_m^n

Let $m, n \ge 1$ and $m + n \ge 3$. The biassociahedron $\mathcal{K} \mathcal{K}^n_m$ is an $(m + n - 3)$ -dimensional contractible polytope constructed by S. Saneblidze and U (2022) with faces indexed by m -in/n-out upward-directed graphs

The biassociahedron KK_3^2

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024

э

 QQ

The Biassociahedron KK_m^n

Let $m, n \ge 1$ and $m + n \ge 3$. The biassociahedron $\mathcal{K} \mathcal{K}^n_m$ is an $(m + n - 3)$ -dimensional contractible polytope constructed by S. Saneblidze and U (2022) with faces indexed by m -in/n-out upward-directed graphs

The biassociahedron KK_3^2

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024

э

 QQ

•
$$
KK_n^1 = K_n \cong K^n = KK_1^n
$$

Let $3 \leq k \leq \infty$. An A_k -**bialgebra** consists of

Let $3 \leq k \leq \infty$. An A_k-**bialgebra** consists of

• a dg vector space (H, d) , where $|d| = +1$

Let $3 \leq k \leq \infty$. An A_k-**bialgebra** consists of

- a dg vector space (H, d) , where $|d| = +1$
- multilinear operations $\{\omega_m^n: H^{\otimes m} \to H^{\otimes n} \mid m+n \geq 3\},$

where $|\omega_m^n| = 3 - m - n$ and $m + n \leq k$ when $k < \infty$

Let $3 \leq k \leq \infty$. An A_k -**bialgebra** consists of

- a dg vector space (H, d) , where $|d| = +1$
- multilinear operations $\{\omega_m^n: H^{\otimes m} \to H^{\otimes n} \mid m+n \geq 3\},$

where $|\omega_m^n| = 3 - m - n$ and $m + n \leq k$ when $k < \infty$

• structure maps

$$
\{\alpha_m^n : (CC_* (KK_m^n), \partial) \to (Hom (H^{\otimes m}, H^{\otimes n}), \nabla)\},\
$$

where $\alpha_m^n \left(\frac{W}{m}\right) = \omega_m^n$ and $\nabla f = d^{\otimes} \circ f + f \circ d^{\otimes}$

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024
∢□ ▶ ∢를 ▶ ∢를 ▶ ∢를 ▶ ⊙९⊙

Let $3 \leq k \leq \infty$. An A_k-**bialgebra** consists of

- a dg vector space (H, d) , where $|d| = +1$
- multilinear operations $\{\omega_m^n: H^{\otimes m} \to H^{\otimes n} \mid m+n \geq 3\},$

where $|\omega_m^n| = 3 - m - n$ and $m + n \leq k$ when $k < \infty$

• structure maps

$$
\{\alpha_m^n : (CC_* (KK_m^n), \partial) \to (Hom (H^{\otimes m}, H^{\otimes n}), \nabla)\},\
$$

where $\alpha_m^n \left(\frac{W}{m}\right) = \omega_m^n$ and $\nabla f = d^{\otimes} \circ f + f \circ d^{\otimes}$

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024

An A_k -bialgebra is **strict** if $\nabla \omega_m^n = 0$ for all m and n

Let $3 \leq k \leq \infty$. An A_k-**bialgebra** consists of

- a dg vector space (H, d) , where $|d| = +1$
- multilinear operations $\{\omega_m^n: H^{\otimes m} \to H^{\otimes n} \mid m+n \geq 3\},$

where $|\omega_m^n| = 3 - m - n$ and $m + n \leq k$ when $k < \infty$

• structure maps

$$
\{\alpha_m^n : (CC_* (KK_m^n), \partial) \to (Hom (H^{\otimes m}, H^{\otimes n}), \nabla)\},\
$$

where $\alpha_m^n \left(\frac{W}{m}\right) = \omega_m^n$ and $\nabla f = d^{\otimes} \circ f + f \circ d^{\otimes}$

An A_k -bialgebra is **strict** if $\nabla \omega_m^n = 0$ for all m and n

• A_k -algebras are A_{k+1} -bialgebras with $\omega_m^n = 0$ for all $n > 1$

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024

Let $3 \leq k \leq \infty$. An A_k-**bialgebra** consists of

- a dg vector space (H, d) , where $|d| = +1$
- multilinear operations $\{\omega_m^n: H^{\otimes m} \to H^{\otimes n} \mid m+n \geq 3\},$

where $|\omega_m^n| = 3 - m - n$ and $m + n \leq k$ when $k < \infty$

• structure maps

$$
\{\alpha_m^n : (CC_* (KK_m^n), \partial) \to (Hom (H^{\otimes m}, H^{\otimes n}), \nabla)\},\
$$

where $\alpha_m^n \left(\frac{W}{m}\right) = \omega_m^n$ and $\nabla f = d^{\otimes} \circ f + f \circ d^{\otimes}$

An A_k -bialgebra is **strict** if $\nabla \omega_m^n = 0$ for all m and n

- A_k -algebras are A_{k+1} -bialgebras with $\omega_m^n = 0$ for all $n > 1$
- [TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024 • Strict A₄-bialgebras are graded Hopf algebras

• For simplicity denote $\mu:=\omega_2^1$ and $\Delta:=\omega_1^2$

• For simplicity denote $\mu:=\omega_2^1$ and $\Delta:=\omega_1^2$

• Let $\sigma_{m,n}$ denote the canonical permutation

$$
(H_1\otimes\cdots\otimes H_m)^{\otimes n}\approx H_1^{\otimes n}\otimes\cdots\otimes H_m^{\otimes n}
$$

• For simplicity denote $\mu:=\omega_2^1$ and $\Delta:=\omega_1^2$

• Let $\sigma_{m,n}$ denote the canonical permutation

$$
(H_1\otimes\cdots\otimes H_m)^{\otimes n}\approx H_1^{\otimes n}\otimes\cdots\otimes H_m^{\otimes n}
$$

 \bullet α_m^n identifies each cell of KK_m^n with a composition of *ω*-operations, e.g.,

$$
\alpha_2^2\left(\bigotimes\right) = (\mu \otimes \mu)\sigma_{2,2}(\Delta \otimes \Delta)
$$

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024

• For simplicity denote $\mu:=\omega_2^1$ and $\Delta:=\omega_1^2$

• Let $\sigma_{m,n}$ denote the canonical permutation

$$
(H_1\otimes\cdots\otimes H_m)^{\otimes n}\approx H_1^{\otimes n}\otimes\cdots\otimes H_m^{\otimes n}
$$

 \bullet α_m^n identifies each cell of KK_m^n with a composition of *ω*-operations, e.g.,

$$
\alpha_2^2 \left(\bigotimes \right) = (\mu \otimes \mu) \sigma_{2,2}(\Delta \otimes \Delta)
$$

• Combinatorics of KK_m^n encode the structure relation

$$
\nabla \omega_m^n = (\alpha_m^n \circ \partial) \left(\sum_m^n \right)
$$

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024
۱۹۳۰ - ۱۹۴۰ ۱۹۴۰ ۱۹۴۰ ۱۹۴۰ ۱۹۴۰

The Differential is a Biderivation

$$
\nabla \mu = d\mu + \mu (d\otimes \mathbf{1} + \mathbf{1} \otimes d) = 0
$$

$$
d\mu = \mu (d\otimes \mathbf{1} + \mathbf{1} \otimes d)
$$

The Differential is a Biderivation

Dually, KK_1^2 is a point and d is a coderivation

$$
\Delta d=(d\otimes 1+1\otimes d)\Delta
$$

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024
۱۹۳۰ - ۱۹۴۰ ۱۹۴۰ ۱۹۴۰ ۱۹۴۰ ۱۹۴۰

The Differential is a Biderivation

Dually, KK_1^2 is a point and d is a coderivation

$$
\Delta d = (d \otimes 1 + 1 \otimes d)\Delta
$$

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024

• The differential in an A_k -bialgebra is a biderivation

Homotopy Biassociativity

 KK_3^1 :

$$
\nabla \omega_3^1 = \mu(\mu \otimes \mathbf{1}) + \mu(\mathbf{1} \otimes \mu)
$$

Homotopy Biassociativity

• Strict A₄-bialgebras are biassociative

$$
\mu(\mu \otimes \mathbf{1}) = \mu(\mathbf{1} \otimes \mu)
$$

$$
(\Delta \otimes \mathbf{1})\Delta = (\mathbf{1} \otimes \Delta)\Delta
$$

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024
∢□ ▶ ∢를 ▶ ∢를 ▶ ∢를 ▶ ⊙९⊙

Homotopy Compatibility

$$
\nabla \omega_2^2 = \Delta \mu + (\mu \otimes \mu) \sigma_{2,2}(\Delta \otimes \Delta)
$$

Homotopy Compatibility

$$
\nabla \omega_2^2 = \Delta \mu + (\mu \otimes \mu) \sigma_{2,2}(\Delta \otimes \Delta)
$$

• Strict A₄-bialgebras are dg Hopf algebras

$$
\Delta\mu=(\mu\otimes\mu)\sigma_{2,2}(\Delta\otimes\Delta)
$$

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024

Decoding the KK_3^2 Structure Relation

 $\nabla \omega_3^2 =$

$$
\nabla \omega_3^2 = \Delta \omega_3^1 \; + \;
$$

 $\nabla \omega_3^2 = \Delta \omega_3^1 + \omega_2^2 (\mu \otimes {\bf 1} + {\bf 1} \otimes \mu)$

$$
\nabla \omega_3^2 = \Delta \omega_3^1 + \omega_2^2 (\mu \otimes \mathbf{1} + \mathbf{1} \otimes \mu)
$$

$$
+ (\mu \otimes \mu) \sigma_{2,2} (\omega_2^2 \otimes \Delta + \Delta \otimes \omega_2^2)
$$

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024
∢□ ▶ ∢를 ▶ ∢를 ▶ ∢를 ▶ ⊙९⊙ 目

$$
\nabla \omega_3^2 = \Delta \omega_3^1 + \omega_2^2 (\mu \otimes \mathbf{1} + \mathbf{1} \otimes \mu)
$$

+
$$
(\mu \otimes \mu) \sigma_{2,2} (\omega_2^2 \otimes \Delta + \Delta \otimes \omega_2^2)
$$

+
$$
\left(\mu (\mu \otimes \mathbf{1}) \otimes \omega_3^1 + \omega_3^1 \otimes \mu (\mathbf{1} \otimes \mu) \right) \sigma_{2,3} \Delta^{\otimes 3}
$$

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024 目

$$
\nabla \omega_3^2 = \Delta \omega_3^1 + \omega_2^2 (\mu \otimes \mathbf{1} + \mathbf{1} \otimes \mu)
$$

+
$$
(\mu \otimes \mu) \sigma_{2,2} (\omega_2^2 \otimes \Delta + \Delta \otimes \omega_2^2)
$$

+
$$
\left(\mu (\mu \otimes \mathbf{1}) \otimes \omega_3^1 + \omega_3^1 \otimes \mu (\mathbf{1} \otimes \mu)\right) \sigma_{2,3} \Delta^{\otimes 3}
$$

• All structure relations are decoded in a similar way

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024

Ε

• Let $a_i \in H^i(S^i; \mathbb{Z}_2)$ and $b \in H^3\left(\Sigma \mathbb{C}P^2; \mathbb{Z}_2\right)$

• Let
$$
a_i \in H^i(S^i; \mathbb{Z}_2)
$$
 and $b \in H^3(\Sigma \mathbb{C}P^2; \mathbb{Z}_2)$

• Consider the total space X in the Postnikov system

$$
K(\mathbb{Z}_2,4) \longrightarrow X \longrightarrow \mathcal{LK}(\mathbb{Z}_2,5)
$$
\n
$$
p \downarrow \qquad \qquad \downarrow
$$
\n
$$
(S^2 \times S^3) \vee \Sigma \mathbb{C}P^2 \xrightarrow{f} K(\mathbb{Z}_2,5)
$$
\n
$$
a_2a_3 + Sq^2b \qquad \qquad \downarrow
$$
\n
$$
t_5
$$

• Let
$$
a_i \in H^i(S^i; \mathbb{Z}_2)
$$
 and $b \in H^3(\Sigma \mathbb{C}P^2; \mathbb{Z}_2)$

• Consider the total space X in the Postnikov system

$$
K(\mathbb{Z}_2,4) \longrightarrow X \longrightarrow \mathcal{LK}(\mathbb{Z}_2,5)
$$
\n
$$
p \downarrow \qquad \qquad \downarrow
$$
\n
$$
(S^2 \times S^3) \vee \Sigma \mathbb{C}P^2 \stackrel{f}{\longrightarrow} K(\mathbb{Z}_2,5)
$$
\n
$$
a_2a_3 + Sq^2b \stackrel{\longleftarrow}{\longleftarrow} \qquad \qquad \iota_5
$$

•
$$
H^*(X; \mathbb{Z}_2) = \{1, a_2, a_3, b, a_2a_3 = Sq^2b, \ldots\}
$$

• Let
$$
a_i \in H^i(S^i; \mathbb{Z}_2)
$$
 and $b \in H^3(\Sigma \mathbb{C}P^2; \mathbb{Z}_2)$

• Consider the total space X in the Postnikov system

$$
K(\mathbb{Z}_2,4) \longrightarrow X \longrightarrow \mathcal{LK}(\mathbb{Z}_2,5)
$$
\n
$$
p \downarrow \qquad \qquad \downarrow
$$
\n
$$
(S^2 \times S^3) \vee \Sigma \mathbb{C}P^2 \stackrel{f}{\longrightarrow} K(\mathbb{Z}_2,5)
$$
\n
$$
a_2a_3 + Sq^2b \stackrel{\longleftarrow}{\longleftarrow} \qquad a_5
$$

- $H^*(X; \mathbb{Z}_2) = \{1, a_2, a_3, b, a_2a_3 = Sq^2b, \ldots\}$
- $H^*(\Omega X; \mathbb{Z}_2)$ is a graded Hopf algebra

• $A := H^* (X; \mathbb{Z}_2)$ is a graded commutative algebra

- $A := H^* (X; \mathbb{Z}_2)$ is a graded commutative algebra
- The bar construction BA with standard differential d_{BA} and free coproduct Δ is a dg coalgebra

- $A := H^* (X; \mathbb{Z}_2)$ is a graded commutative algebra
- The bar construction BA with standard differential d_{BA} and free coproduct Δ is a dg coalgebra
- There is a perturbation μ of the shuffle product

 $sh([a] \otimes [b]) := [a|b] + [b|a],$

which acts as the shuffle product except

 $\mu([b] \otimes [b]) = [a_2a_3] = d_{BA}[a_2|a_3]$

- $A := H^* (X; \mathbb{Z}_2)$ is a graded commutative algebra
- The bar construction BA with standard differential d_{BA} and free coproduct Δ is a dg coalgebra
- There is a perturbation μ of the shuffle product

 $sh([a] \otimes [b]) := [a|b] + [b|a],$

which acts as the shuffle product except

$$
\mu([b] \otimes [b]) = [a_2 a_3] = d_{BA}[a_2|a_3]
$$

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024
∢ال الجه الجه الطه الطه

• Let μ _H and Δ _H be the induced operations on $H := H^*(BA)$

- $A := H^* (X; \mathbb{Z}_2)$ is a graded commutative algebra
- The bar construction BA with standard differential d_{BA} and free coproduct Δ is a dg coalgebra
- There is a perturbation μ of the shuffle product

 $sh([a] \otimes [b]) := [a|b] + [b|a],$

which acts as the shuffle product except

$$
\mu([b] \otimes [b]) = [a_2 a_3] = d_{BA}[a_2|a_3]
$$

• Let μ _H and Δ _H be the induced operations on $H := H^*(BA)$

• $(H, \mu_H, \Delta_H) \approx H^* (\Omega X; \mathbb{Z}_2)$ as graded Hopf algebras

The Transfer Theorem (Saneblidze-U 2011)

For H as above, a cocycle-selecting map $g : H \rightarrow BA$ induces an A_{∞} -bialgebra structure

$$
\omega = \{\omega_m^n : H^{\otimes m} \to H^{\otimes n}\}\
$$

The Transfer Theorem (Saneblidze-U 2011)

For H as above, a cocycle-selecting map $g : H \rightarrow BA$ induces an A_{∞} -bialgebra structure

$$
\omega=\{\omega_{m}^{n}:H^{\otimes m}\to H^{\otimes n}\}
$$

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024

Proposition Denote $\alpha_{i-1} := \text{cls}[a_i]$ and $\beta := \text{cls}[b]$ in H.

Following the proof of the Transfer Theorem

The Transfer Theorem (Saneblidze-U 2011)

For H as above, a cocycle-selecting map $g : H \rightarrow BA$ induces an A_{∞} -bialgebra structure

$$
\omega = \{\omega^n_m : H^{\otimes m} \to H^{\otimes n}\}
$$

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024

Proposition Denote $\alpha_{i-1} := \text{cls}[a_i]$ and $\beta := \text{cls}[b]$ in H.

Following the proof of the Transfer Theorem

 $\omega_3^1(\beta \otimes \beta \otimes \alpha_1) = \alpha_1|\alpha_2|\alpha_1$

The Transfer Theorem (Saneblidze-U 2011)

For H as above, a cocycle-selecting map $g : H \rightarrow BA$ induces an A_{∞} -bialgebra structure

$$
\omega = \{\omega^n_m : H^{\otimes m} \to H^{\otimes n}\}
$$

Proposition Denote $\alpha_{i-1} := \text{cls}[a_i]$ and $\beta := \text{cls}[b]$ in H.

Following the proof of the Transfer Theorem

$$
\omega_3^1(\beta \otimes \beta \otimes \alpha_1) = \alpha_1 |\alpha_2|\alpha_1
$$

$$
\omega_2^2(\beta \otimes \beta) = \alpha_1 \otimes \alpha_2 \text{ and } \omega_1^3 \equiv 0
$$

The Transfer Theorem (Saneblidze-U 2011)

For H as above, a cocycle-selecting map $g : H \rightarrow BA$ induces an A_{∞} -bialgebra structure

$$
\omega = \{\omega^n_m : H^{\otimes m} \to H^{\otimes n}\}
$$

Proposition Denote $\alpha_{i-1} := \text{cls}[a_i]$ and $\beta := \text{cls}[b]$ in H.

Following the proof of the Transfer Theorem

$$
\omega_3^1(\beta \otimes \beta \otimes \alpha_1) = \alpha_1 |\alpha_2|\alpha_1
$$

$$
\omega_2^2(\beta \otimes \beta) = \alpha_1 \otimes \alpha_2 \text{ and } \omega_1^3 \equiv 0
$$

 \bullet $(H, \mu_H, \Delta_H, \omega_3^1, \omega_2^2)$ is a "Gerstenhaber-Schack bialgebra"

The **Gerstenhaber-Schack** (G-S) **Complex** of a dg Hopf algebra (H, d, μ, Δ) is the triple complex

 $(Hom^*(H^{\otimes m}, H^{\otimes n}), \nabla, \partial, \delta)$

where

The **Gerstenhaber-Schack** (G-S) **Complex** of a dg Hopf algebra (H, d, μ, Δ) is the triple complex

 $(Hom^*(H^{\otimes m}, H^{\otimes n}), \nabla, \partial, \delta)$

where

 ∇ is induced by d

The **Gerstenhaber-Schack** (G-S) **Complex** of a dg Hopf algebra (H, d, μ, Δ) is the triple complex

 $(Hom^*(H^{\otimes m}, H^{\otimes n}), \nabla, \partial, \delta)$

where

 ∇ is induced by d

∂ is induced by the bar differential

The **Gerstenhaber-Schack** (G-S) **Complex** of a dg Hopf algebra (H, d, μ, Δ) is the triple complex

 $(Hom^*(H^{\otimes m}, H^{\otimes n}), \nabla, \partial, \delta)$

where

 ∇ is induced by d

- *∂* is induced by the bar differential
- *δ* is induced by the cobar differential

The **Gerstenhaber-Schack** (G-S) **Complex** of a dg Hopf algebra (H, d, μ, Δ) is the triple complex

 $(Hom^*(H^{\otimes m}, H^{\otimes n}), \nabla, \partial, \delta)$

where

 ∇ is induced by d

∂ is induced by the bar differential

δ is induced by the cobar differential

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024

• Total differential $D := \nabla + \partial + \delta$

The **Gerstenhaber-Schack** (G-S) **Complex** of a dg Hopf algebra (H, d, μ, Δ) is the triple complex

 $(Hom^*(H^{\otimes m}, H^{\otimes n}), \nabla, \partial, \delta)$

where

 ∇ is induced by d *∂* is induced by the bar differential *δ* is induced by the cobar differential

- Total differential $D := \nabla + \partial + \delta$
- The subspace of total r -cochains in degree p

$$
C_{GS}^{r,p}(H,H):=\bigoplus_{p+m+n=r+1}Hom^{p}(H^{\otimes m},H^{\otimes n})
$$

The **Gerstenhaber-Schack** (G-S) **Complex** of a dg Hopf algebra (H, d, μ, Δ) is the triple complex

 $(Hom^*(H^{\otimes m}, H^{\otimes n}), \nabla, \partial, \delta)$

where

 ∇ is induced by d *∂* is induced by the bar differential *δ* is induced by the cobar differential

- Total differential $D := \nabla + \partial + \delta$
- The subspace of total r -cochains in degree p

$$
C_{GS}^{r,p}(H,H):=\bigoplus_{p+m+n=r+1}Hom^{p}(H^{\otimes m},H^{\otimes n})
$$

• The r^{th} G-S cohomology group in degree p

$$
H_{GS}^{r,p}(H;H) := H^* (C_{GS}^{r,p}(H,H), D) \t\t\t TGTS 10-4-2024
$$

A 2-Cocycle with $m + n \leq 4$

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024 **K ロ ト K 倒 ト K 目** つへへ э

$$
\nabla \omega_3^2 = \omega_2^2 (\mu \otimes \mathbf{1} + \mathbf{1} \otimes \mu) + (\mu \otimes \mu) \sigma_{2,2}(\omega_2^2 \otimes \Delta + \Delta \otimes \omega_2^2) + \Delta \omega_3^1 + (\mu(\mu \otimes \mathbf{1}) \otimes \omega_3^1 + \omega_3^1 \otimes \mu(\mathbf{1} \otimes \mu)) \sigma_{2,3} \Delta^{\otimes 3}
$$

$$
\nabla \omega_3^2 = \omega_2^2 (\mu \otimes \mathbf{1} + \mathbf{1} \otimes \mu) + (\mu \otimes \mu) \sigma_{2,2} (\omega_2^2 \otimes \Delta + \Delta \otimes \omega_2^2) \\ + \Delta \omega_3^1 + \Bigl(\mu (\mu \otimes \mathbf{1}) \otimes \omega_3^1 + \omega_3^1 \otimes \mu (\mathbf{1} \otimes \mu)\Bigr) \sigma_{2,3} \Delta^{\otimes 3}
$$

By definition

$$
\partial \omega_2^2 = \omega_2^2 (\mu \otimes \mathbf{1} + \mathbf{1} \otimes \mu) + (\mu \otimes \mu) \sigma_{2,2}(\omega_2^2 \otimes \Delta + \Delta \otimes \omega_2^2)
$$

$$
\nabla \omega_3^2 = \omega_2^2 (\mu \otimes \mathbf{1} + \mathbf{1} \otimes \mu) + (\mu \otimes \mu) \sigma_{2,2} (\omega_2^2 \otimes \Delta + \Delta \otimes \omega_2^2) + \Delta \omega_3^1 + (\mu (\mu \otimes \mathbf{1}) \otimes \omega_3^1 + \omega_3^1 \otimes \mu (\mathbf{1} \otimes \mu)) \sigma_{2,3} \Delta^{\otimes 3}
$$

By definition

$$
\partial \omega_2^2 = \omega_2^2 (\mu \otimes \mathbf{1} + \mathbf{1} \otimes \mu) + (\mu \otimes \mu) \sigma_{2,2} (\omega_2^2 \otimes \Delta + \Delta \otimes \omega_2^2)
$$

$$
\delta \omega_3^1 = \Delta \omega_3^1 + (\mu (\mu \otimes \mathbf{1}) \otimes \omega_3^1 + \omega_3^1 \otimes \mu (\mathbf{1} \otimes \mu)) \sigma_{2,3} \Delta^{\otimes 3}
$$

$$
\nabla \omega_3^2 = \omega_2^2 (\mu \otimes \mathbf{1} + \mathbf{1} \otimes \mu) + (\mu \otimes \mu) \sigma_{2,2} (\omega_2^2 \otimes \Delta + \Delta \otimes \omega_2^2) \\ + \Delta \omega_3^1 + \Bigl(\mu (\mu \otimes \mathbf{1}) \otimes \omega_3^1 + \omega_3^1 \otimes \mu (\mathbf{1} \otimes \mu)\Bigr) \sigma_{2,3} \Delta^{\otimes 3}
$$

By definition

$$
\partial \omega_2^2 = \omega_2^2 (\mu \otimes \mathbf{1} + \mathbf{1} \otimes \mu) + (\mu \otimes \mu) \sigma_{2,2}(\omega_2^2 \otimes \Delta + \Delta \otimes \omega_2^2)
$$

$$
\delta \omega_3^1 = \Delta \omega_3^1 + (\mu(\mu \otimes \mathbf{1}) \otimes \omega_3^1 + \omega_3^1 \otimes \mu(\mathbf{1} \otimes \mu)) \sigma_{2,3} \Delta^{\otimes 3}
$$

• The KK_3^2 structure relation in terms of G-S differentials is

$$
\nabla \omega_3^2 = \partial \omega_2^2 + \delta \omega_3^1
$$

$$
\nabla \omega_3^2 = \omega_2^2 (\mu \otimes \mathbf{1} + \mathbf{1} \otimes \mu) + (\mu \otimes \mu) \sigma_{2,2} (\omega_2^2 \otimes \Delta + \Delta \otimes \omega_2^2) + \Delta \omega_3^1 + \left(\mu (\mu \otimes \mathbf{1}) \otimes \omega_3^1 + \omega_3^1 \otimes \mu (\mathbf{1} \otimes \mu) \right) \sigma_{2,3} \Delta^{\otimes 3}
$$

By definition

$$
\partial \omega_2^2 = \omega_2^2 (\mu \otimes \mathbf{1} + \mathbf{1} \otimes \mu) + (\mu \otimes \mu) \sigma_{2,2} (\omega_2^2 \otimes \Delta + \Delta \otimes \omega_2^2)
$$

$$
\delta \omega_3^1 = \Delta \omega_3^1 + (\mu (\mu \otimes \mathbf{1}) \otimes \omega_3^1 + \omega_3^1 \otimes \mu (\mathbf{1} \otimes \mu)) \sigma_{2,3} \Delta^{\otimes 3}
$$

• The KK_3^2 structure relation in terms of G-S differentials is

$$
\nabla \omega_3^2 = \partial \omega_2^2 + \delta \omega_3^1
$$

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024
A d + A

• Other relations with $m + n = 5$ have similar representations

$$
KK_1^4: \t\nabla \omega_1^4 = \delta \omega_1^3 \t\stackrel{\nabla \omega = 0}{\Rightarrow} \t\delta \omega_1^3 = 0
$$

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024
A d > A d > A d > A d + A d

$$
KK_1^4: \nabla \omega_1^4 = \delta \omega_1^3 \n\Rightarrow \n\delta \omega_1^3 = 0
$$
\n
$$
KK_2^3: \n\nabla \omega_2^3 = \partial \omega_1^3 + \delta \omega_2^2 \n\Rightarrow \n\partial \omega_1^3 + \delta \omega_2^2 = 0
$$

$$
KK_1^4: \nabla \omega_1^4 = \delta \omega_1^3 \n\Rightarrow \n\delta \omega_1^3 = 0
$$
\n
$$
KK_2^3: \n\nabla \omega_2^3 = \partial \omega_1^3 + \delta \omega_2^2 \Rightarrow \partial \omega_1^3 + \delta \omega_2^2 = 0
$$
\n
$$
KK_3^2: \n\nabla \omega_3^2 = \partial \omega_2^2 + \delta \omega_3^1 \Rightarrow \partial \omega_2^2 + \delta \omega_3^1 = 0
$$

$$
KK_1^4: \nabla \omega_1^4 = \delta \omega_1^3 \n\Rightarrow \n\delta \omega_1^3 = 0
$$
\n
$$
KK_2^3: \n\nabla \omega_2^3 = \partial \omega_1^3 + \delta \omega_2^2 \Rightarrow \partial \omega_1^3 + \delta \omega_2^2 = 0
$$
\n
$$
KK_3^2: \n\nabla \omega_3^2 = \partial \omega_2^2 + \delta \omega_3^1 \Rightarrow \partial \omega_2^2 + \delta \omega_3^1 = 0
$$
\n
$$
KK_4^1: \n\nabla \omega_4^1 = \partial \omega_3^1 \Rightarrow \partial \omega_3^1 = 0
$$

Structure Relations with $m + n = 5$

$$
KK_1^4: \nabla \omega_1^4 = \delta \omega_1^3 \n\Rightarrow \n\delta \omega_1^3 = 0
$$
\n
$$
KK_2^3: \n\nabla \omega_2^3 = \partial \omega_1^3 + \delta \omega_2^2 \n\Rightarrow \n\partial \omega_1^3 + \delta \omega_2^2 = 0
$$
\n
$$
KK_3^2: \n\nabla \omega_3^2 = \partial \omega_2^2 + \delta \omega_3^1 \n\Rightarrow \n\partial \omega_2^2 + \delta \omega_3^1 = 0
$$
\n
$$
KK_4^1: \n\nabla \omega_4^1 = \partial \omega_3^1 \n\Rightarrow \n\partial \omega_3^1 = 0
$$

• In strict A_5 -bialgebras $D(\omega_3^1 + \omega_2^2 + \omega_1^3) = \partial(\omega_3^1 + \omega_2^2 + \omega_1^3) + \delta(\omega_3^1 + \omega_2^2 + \omega_1^3)$ $\delta \omega_1^3 + (\partial \omega_1^3 + \delta \omega_2^2) + (\partial \omega_2^2 + \delta \omega_3^1) + \partial \omega_3^1 = 0$

Structure Relations with $m + n = 5$

$$
KK_1^4: \nabla \omega_1^4 = \delta \omega_1^3 \n\Rightarrow \n\delta \omega_1^3 = 0
$$
\n
$$
KK_2^3: \n\nabla \omega_2^3 = \partial \omega_1^3 + \delta \omega_2^2 \n\Rightarrow \n\partial \omega_1^3 + \delta \omega_2^2 = 0
$$
\n
$$
KK_3^2: \n\nabla \omega_3^2 = \partial \omega_2^2 + \delta \omega_3^1 \n\Rightarrow \n\partial \omega_2^2 + \delta \omega_3^1 = 0
$$
\n
$$
KK_4^1: \n\nabla \omega_4^1 = \partial \omega_3^1 \n\Rightarrow \n\partial \omega_3^1 = 0
$$

• In strict A_5 -bialgebras $D(\omega_3^1 + \omega_2^2 + \omega_1^3) = \partial(\omega_3^1 + \omega_2^2 + \omega_1^3) + \delta(\omega_3^1 + \omega_2^2 + \omega_1^3)$ $\delta \omega_1^3 + (\partial \omega_1^3 + \delta \omega_2^2) + (\partial \omega_2^2 + \delta \omega_3^1) + \partial \omega_3^1 = 0$

• ω_3^1 , ω_2^2 , ω_1^3 satisfy the strict A₅-bialgebra structure relations ifl

Structure Relations with $m + n = 5$

$$
KK_1^4: \nabla \omega_1^4 = \delta \omega_1^3 \n\Rightarrow \n\delta \omega_1^3 = 0
$$
\n
$$
KK_2^3: \n\nabla \omega_2^3 = \partial \omega_1^3 + \delta \omega_2^2 \Rightarrow \partial \omega_1^3 + \delta \omega_2^2 = 0
$$
\n
$$
KK_3^2: \n\nabla \omega_3^2 = \partial \omega_2^2 + \delta \omega_3^1 \Rightarrow \partial \omega_2^2 + \delta \omega_3^1 = 0
$$
\n
$$
KK_4^1: \n\nabla \omega_4^1 = \partial \omega_3^1 \Rightarrow \partial \omega_3^1 = 0
$$

• In strict A_5 -bialgebras $D(\omega_3^1 + \omega_2^2 + \omega_1^3) = \partial(\omega_3^1 + \omega_2^2 + \omega_1^3) + \delta(\omega_3^1 + \omega_2^2 + \omega_1^3)$ $\delta \omega_1^3 + (\partial \omega_1^3 + \delta \omega_2^2) + (\partial \omega_2^2 + \delta \omega_3^1) + \partial \omega_3^1 = 0$

• ω_3^1 , ω_2^2 , ω_1^3 satisfy the strict A₅-bialgebra structure relations ifl $\omega_3^1+\omega_2^2+\omega_1^3$ is the deg -1 component of a strict 2-cocycle

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024
پی او او او او او او او او او او

The Degree -1 Component of a Strict 2-Cocycle

$$
\delta\omega_1^3 = 0
$$
\n
$$
\uparrow
$$
\n
$$
\omega_1^3 \longrightarrow \partial\omega_1^3 + \delta\omega_2^2 = 0
$$
\n
$$
\uparrow
$$
\n
$$
\omega_2^2 \longrightarrow \partial\omega_2^2 + \delta\omega_3^1 = 0
$$
\n
$$
\uparrow
$$
\n
$$
\omega_3^1 \longrightarrow \partial\omega_3^1 = 0
$$
\n
$$
D(\omega_3^1 + \omega_2^2 + \omega_1^3) = 0
$$

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024
A d \rightarrow 4 d \rightarrow

Gerstenhaber-Schack Bialgebras

 $\mathsf{An\,\,} A_4\text{-bialgebra}\,\left(H,\mu,\Delta,\omega_3^1,\omega_2^2,\omega_1^3\right)$ is a $\mathsf{Gerstenhaber\text{-}Schack}$ **bialgebra** if

$$
D(\omega_3^1+\omega_2^2+\omega_1^3)=0
$$

Gerstenhaber-Schack Bialgebras

 $\mathsf{An\,\,} A_4\text{-bialgebra}\,\left(H,\mu,\Delta,\omega_3^1,\omega_2^2,\omega_1^3\right)$ is a $\mathsf{Gerstenhaber\text{-}Schack}$ **bialgebra** if

$$
D(\omega_3^1+\omega_2^2+\omega_1^3)=0
$$

Application Since the induced operations $\omega_3^1, \omega_2^2, \omega_1^3 \equiv 0$ on $H \approx H^*(\Omega X; \mathbb{Z}_2)$ satisfy the strict A₅-bialgebra structure relations, $D(\omega_3^1+\omega_2^2+\omega_1^3)=0.$ Therefore

Gerstenhaber-Schack Bialgebras

 $\mathsf{An\,\,} A_4\text{-bialgebra}\,\left(H,\mu,\Delta,\omega_3^1,\omega_2^2,\omega_1^3\right)$ is a $\mathsf{Gerstenhaber\text{-}Schack}$ **bialgebra** if

$$
D(\omega_3^1+\omega_2^2+\omega_1^3)=0
$$

Application Since the induced operations $\omega_3^1, \omega_2^2, \omega_1^3 \equiv 0$ on $H \approx H^*(\Omega X; \mathbb{Z}_2)$ satisfy the strict A₅-bialgebra structure relations, $D(\omega_3^1+\omega_2^2+\omega_1^3)=0.$ Therefore

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024 10-4-2024 10-4-2024 10-4-2024 10-4-2024 10-4-2024 10-4-2024 10-4-2024 10-4-2024 10-4-2024 10-4-

•
$$
(H, \mu_H, \Delta_H, \omega_3^1, \omega_2^2)
$$
 is a G-S bialgebra

• A **G-S extension** of a graded Hopf algebra (H*, µ,* ∆) is a G-S bialgebra $(H, \mu, \Delta, \omega := {\{\omega_3^1, \omega_2^2, \omega_1^3\}})$

- A **G-S extension** of a graded Hopf algebra (H*, µ,* ∆) is a G-S bialgebra $(H, \mu, \Delta, \omega := {\{\omega_3^1, \omega_2^2, \omega_1^3\}})$
- G-S extensions ω and ω' are **equivalent** if there exists an isomorphism $\Phi: (H,\mu,\Delta,\omega) \Rightarrow (H,\mu,\Delta,\omega')$ of $A_4\text{-bialgebras}$

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024
پی او او او او او او او او او او

- A **G-S extension** of a graded Hopf algebra (H*, µ,* ∆) is a G-S bialgebra $(H, \mu, \Delta, \omega := {\{\omega_3^1, \omega_2^2, \omega_1^3\}})$
- G-S extensions ω and ω' are **equivalent** if there exists an isomorphism $\Phi: (H,\mu,\Delta,\omega) \Rightarrow (H,\mu,\Delta,\omega')$ of $A_4\text{-bialgebras}$

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024
پیوس کے ایک ایک ایک ایک ایک

• A G-S extension ω is **trivial** if $(H, \mu, \Delta, \omega) \cong (H, \mu, \Delta)$

- A **G-S extension** of a graded Hopf algebra (H*, µ,* ∆) is a G-S bialgebra $(H, \mu, \Delta, \omega := {\{\omega_3^1, \omega_2^2, \omega_1^3\}})$
- G-S extensions ω and ω' are **equivalent** if there exists an isomorphism $\Phi: (H,\mu,\Delta,\omega) \Rightarrow (H,\mu,\Delta,\omega')$ of $A_4\text{-bialgebras}$
- A G-S extension ω is **trivial** if $(H, \mu, \Delta, \omega) \cong (H, \mu, \Delta)$

Theorem Given a graded Hopf algebra (H*, µ,* ∆) and multilinear $\mathsf{operations} \ \omega := \{\omega_3^1, \omega_2^2, \omega_1^3\}, \ \ \mathsf{let} \ \ \mathsf{z} := \omega_3^1 + \omega_2^2 + \omega_1^3. \ \ \mathsf{Then}$

- 1. ω is a G-S extension iff $Dz = 0$
- 2. G-S extensions $\omega \sim \omega'$ iff $cls(z z') = 0$

- A **G-S extension** of a graded Hopf algebra (H*, µ,* ∆) is a G-S bialgebra $(H, \mu, \Delta, \omega := {\{\omega_3^1, \omega_2^2, \omega_1^3\}})$
- G-S extensions ω and ω' are **equivalent** if there exists an isomorphism $\Phi: (H,\mu,\Delta,\omega) \Rightarrow (H,\mu,\Delta,\omega')$ of $A_4\text{-bialgebras}$
- A G-S extension ω is **trivial** if $(H, \mu, \Delta, \omega) \cong (H, \mu, \Delta)$

Theorem Given a graded Hopf algebra (H*, µ,* ∆) and multilinear $\mathsf{operations} \ \omega := \{\omega_3^1, \omega_2^2, \omega_1^3\}, \ \ \mathsf{let} \ \ \mathsf{z} := \omega_3^1 + \omega_2^2 + \omega_1^3. \ \ \mathsf{Then}$

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024

- 1. ω is a G-S extension iff $Dz = 0$
- 2. G-S extensions $\omega \sim \omega'$ iff $cls(z z') = 0$

Corollary A G-S extension ω is trivial iff $cls(z) = 0$

- A **G-S extension** of a graded Hopf algebra (H*, µ,* ∆) is a G-S bialgebra $(H, \mu, \Delta, \omega := {\{\omega_3^1, \omega_2^2, \omega_1^3\}})$
- G-S extensions ω and ω' are **equivalent** if there exists an isomorphism $\Phi: (H,\mu,\Delta,\omega) \Rightarrow (H,\mu,\Delta,\omega')$ of $A_4\text{-bialgebras}$
- A G-S extension ω is **trivial** if $(H, \mu, \Delta, \omega) \cong (H, \mu, \Delta)$

Theorem Given a graded Hopf algebra (H*, µ,* ∆) and multilinear $\mathsf{operations} \ \omega := \{\omega_3^1, \omega_2^2, \omega_1^3\}, \ \ \mathsf{let} \ \ \mathsf{z} := \omega_3^1 + \omega_2^2 + \omega_1^3. \ \ \mathsf{Then}$

- 1. ω is a G-S extension iff $Dz = 0$
- 2. G-S extensions $\omega \sim \omega'$ iff $cls(z z') = 0$

Corollary A G-S extension ω is trivial iff $cls(z) = 0$ **Application** The G-S extension ω of $H \approx H^*(\Omega X; \mathbb{Z}_2)$ is non-trivial

The differentials ∇*, ∂,* and *δ* in the G-S complex express the interactions of a higher order operation with the underlying dg Hopf algebra structure, but completely miss its interactions with the higher order structure.

The differentials ∇*, ∂,* and *δ* in the G-S complex express the interactions of a higher order operation with the underlying dg Hopf algebra structure, but completely miss its interactions with the higher order structure.

Consequently, the KK_m^n structure relations cannot be expressed in terms of the G-S differentials when $m + n > 6$.

The differentials ∇*, ∂,* and *δ* in the G-S complex express the interactions of a higher order operation with the underlying dg Hopf algebra structure, but completely miss its interactions with the higher order structure.

Consequently, the KK_m^n structure relations cannot be expressed in terms of the G-S differentials when $m + n \geq 6$.

A potential remedy might be to extend the G-S complex to a multicomplex with additional differentials defined in terms of the higher order operations.

The differentials ∇*, ∂,* and *δ* in the G-S complex express the interactions of a higher order operation with the underlying dg Hopf algebra structure, but completely miss its interactions with the higher order structure.

Consequently, the KK_m^n structure relations cannot be expressed in terms of the G-S differentials when $m + n > 6$.

A potential remedy might be to extend the G-S complex to a multicomplex with additional differentials defined in terms of the higher order operations.

Finally, it would be nice to have a family of spaces X_k whose cohomology admits an A_k but not an A_{k+1} -bialgebra structure. I'll leave this problem for homework!

References

- Gerstenhaber, M., Schack, S.D.: Algebras, bialgebras, quantum groups, and algebraic deformations. In "Contemp. Math." **134**, AMS, Providence, RI (1992).
- Saneblidze, S., Umble, R.: Framed matrices and A∞-bialgebras. Adv. Studies: Euro-Tbilisi Math. J. **15**(4), 41-140 (2022)
- Stasheff, J.: Homotopy associativity of H-spaces I, II. Trans. AMS **108**, 275-312 (1963)
- Umble, R.: The deformation complex for differential graded Hopf algebras. J. Pure Appl. Algebra **106**, 199-222 (1996)

[TG](#page-0-0)[TS](#page-90-0) [10](#page-0-0)[-4-2](#page-90-0)024

• Umble, R.: Gerstenhaber-Schack bialgebras. https://arxiv.org/abs/2401.17771

THANK YOU!

