Gerstenhaber-Schack Bialgebras

Presented by Ron Umble Professor Emeritus, MU

TETRAHEDRAL GEOMETRY-TOPOLOGY SEMINAR

October 4, 2024

・ロト ・四ト ・ヨト ・ヨト

- 2

The Associahedron K_n

Let $n \ge 2$. The associahedron K_n is an (n-2)-dimensional contractible polytope constructed by J. Stasheff (1963) whose faces are indexed by up-rooted planar trees with n leaves

The Associahedron K_4

TGTS 10-4-2024

(日)

Let $2 \le k \le \infty$. An A_k -algebra consists of

Let $2 \le k \le \infty$. An A_k -algebra consists of

• a dg vector space (A, d), where |d| = +1

TGTS 10-4-2024

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Let $2 \le k \le \infty$. An A_k -algebra consists of

- a dg vector space (A, d), where |d| = +1
- multilinear operations $\{\omega_n : A^{\otimes n} \to A \mid n \geq 2\}$,

where $|\omega_n| = 2 - n$ and $n \le k$ when $k < \infty$

Let $2 \le k \le \infty$. An A_k -algebra consists of

- a dg vector space (A, d), where |d| = +1
- multilinear operations $\{\omega_n : A^{\otimes n} \to A \mid n \geq 2\}$,

where $|\omega_n| = 2 - n$ and $n \le k$ when $k < \infty$

• structure maps $\{\alpha_n : (CC_*(K_n), \partial) \to (Hom(A^{\otimes n}, A), \nabla)\},\$ where $\alpha_n\left(\bigwedge_{\pi}\right) = \omega_n$ and $\nabla f = d \circ f + f \circ d^{\otimes}$ (signs ignored)

TGTS 10-4-2024

Let $2 \le k \le \infty$. An A_k -algebra consists of

- a dg vector space (A, d), where |d| = +1
- multilinear operations $\{\omega_n : A^{\otimes n} \to A \mid n \geq 2\}$,

where $|\omega_n| = 2 - n$ and $n \le k$ when $k < \infty$

• structure maps $\{\alpha_n : (CC_*(K_n), \partial) \to (Hom(A^{\otimes n}, A), \nabla)\},\$ where $\alpha_n\left(\bigwedge_{n}\right) = \omega_n$ and $\nabla f = d \circ f + f \circ d^{\otimes}$ (signs ignored)

TGTS 10-4-2024

An A_k -algebra is **strict** if $\nabla \omega_n = 0$ for all n

Let $2 \le k \le \infty$. An A_k -algebra consists of

- a dg vector space (A, d), where |d| = +1
- multilinear operations $\{\omega_n : A^{\otimes n} \to A \mid n \geq 2\}$,

where $|\omega_n| = 2 - n$ and $n \le k$ when $k < \infty$

• structure maps $\{\alpha_n : (CC_*(K_n), \partial) \to (Hom(A^{\otimes n}, A), \nabla)\},\$ where $\alpha_n\left(\bigwedge_{\frac{n}{n}}\right) = \omega_n$ and $\nabla f = d \circ f + f \circ d^{\otimes}$ (signs ignored)

TGTS 10-4-2024

An A_k -algebra is **strict** if $\nabla \omega_n = 0$ for all n

• Strict A₃-algebras are associative

The Coassociahedron K^n

Let $n \ge 2$. As a polytope, $K^n \cong K_n$ with faces indexed by down-rooted planar trees with n leaves

The Coassociahedron K^4

TGTS 10-4-2024

Let $2 \le k \le \infty$. An A_k -coalgebra consists of

Let $2 \le k \le \infty$. An A_k -coalgebra consists of

• a dg vector space (A, d), where |d| = +1

Let $2 \le k \le \infty$. An A_k -coalgebra consists of

- a dg vector space (A, d), where |d| = +1
- multilinear operations $\{\omega^n : A \to A^{\otimes n} \mid n \ge 2\}$,

where $|\omega^n| = 2 - n$ and $n \le k$ when $k < \infty$

Let $2 \le k \le \infty$. An A_k -coalgebra consists of

- a dg vector space (A, d), where |d| = +1
- multilinear operations $\{\omega^n : A \to A^{\otimes n} \mid n \geq 2\}$,

where $|\omega^n| = 2 - n$ and $n \le k$ when $k < \infty$

• structure maps $\{\alpha^n : (CC_*(K^n), \partial) \to (Hom(A, A^{\otimes n}), \nabla)\},\$ where $\alpha^n\left(\overbrace{\Psi}^n\right) = \omega^n$ and $\nabla f = d^{\otimes} \circ f + f \circ d$

TGTS 10-4-2024

Let $2 \le k \le \infty$. An A_k -coalgebra consists of

- a dg vector space (A, d), where |d| = +1
- multilinear operations $\{\omega^n : A \to A^{\otimes n} \mid n \geq 2\}$,

where $|\omega^n| = 2 - n$ and $n \le k$ when $k < \infty$

• structure maps $\{\alpha^n : (CC_*(K^n), \partial) \to (Hom(A, A^{\otimes n}), \nabla)\},\$ where $\alpha^n\left(\overbrace{\Psi}^n\right) = \omega^n$ and $\nabla f = d^{\otimes} \circ f + f \circ d$

TGTS 10-4-2024

An A_k -coalgebra is **strict** if $\nabla \omega^n = 0$ for all n

Let $2 \le k \le \infty$. An A_k -coalgebra consists of

- a dg vector space (A, d), where |d| = +1
- multilinear operations $\{\omega^n : A \to A^{\otimes n} \mid n \geq 2\}$,

where $|\omega^n| = 2 - n$ and $n \le k$ when $k < \infty$

• structure maps $\{\alpha^n : (CC_*(K^n), \partial) \to (Hom(A, A^{\otimes n}), \nabla)\},\$ where $\alpha^n\left(\overbrace{\Psi}^n\right) = \omega^n$ and $\nabla f = d^{\otimes} \circ f + f \circ d$

TGTS 10-4-2024

An A_k -coalgebra is **strict** if $\nabla \omega^n = 0$ for all n

• Strict A₃-coalgebras are coassociative

The Biassociahedron KK_m^n

Let $m, n \ge 1$ and $m + n \ge 3$. The biassociahedron KK_m^n is an (m + n - 3)-dimensional contractible polytope constructed by S. Saneblidze and U (2022) with faces indexed by m-in/n-out upward-directed graphs

The biassociahedron KK_3^2

TGTS 10-4-2024

э

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

The Biassociahedron KK_m^n

Let $m, n \ge 1$ and $m + n \ge 3$. The biassociahedron KK_m^n is an (m + n - 3)-dimensional contractible polytope constructed by S. Saneblidze and U (2022) with faces indexed by m-in/n-out upward-directed graphs

The biassociahedron KK_3^2

TGTS 10-4-2024

э

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

•
$$KK_n^1 = K_n \cong K^n = KK_1^n$$

Let $3 \le k \le \infty$. An A_k -bialgebra consists of

Let $3 \le k \le \infty$. An A_k -bialgebra consists of

• a dg vector space (H, d), where |d| = +1

Let $3 \le k \le \infty$. An A_k -bialgebra consists of

- a dg vector space (H, d), where |d| = +1
- multilinear operations $\{\omega_m^n: H^{\otimes m} \to H^{\otimes n} \mid m+n \geq 3\}$,

where $|\omega_m^n| = 3 - m - n$ and $m + n \le k$ when $k < \infty$

Let $3 \le k \le \infty$. An A_k -bialgebra consists of

- a dg vector space (H, d), where |d| = +1
- multilinear operations $\{\omega_m^n: H^{\otimes m} \to H^{\otimes n} \mid m+n \geq 3\}$,

where $|\omega_m^n| = 3 - m - n$ and $m + n \le k$ when $k < \infty$

structure maps

$$\{\alpha_m^n : (CC_*(KK_m^n), \partial) \to (Hom(H^{\otimes m}, H^{\otimes n}), \nabla)\},\$$

where $\alpha_m^n\left(\sum_m^n\right) = \omega_m^n$ and $\nabla f = d^{\otimes} \circ f + f \circ d^{\otimes}$

TGTS 10-4-2024 < □ > < @ > < ই > < ই > ই তি ৭০ ↔

Let $3 \le k \le \infty$. An A_k -bialgebra consists of

- a dg vector space (H, d), where |d| = +1
- multilinear operations $\{\omega_m^n: H^{\otimes m} \to H^{\otimes n} \mid m+n \geq 3\}$,

where $|\omega_m^n| = 3 - m - n$ and $m + n \le k$ when $k < \infty$

structure maps

$$\{\alpha_m^n : (CC_*(KK_m^n), \partial) \to (Hom(H^{\otimes m}, H^{\otimes n}), \nabla)\},\$$

where $\alpha_m^n\left(\bigotimes_m^n\right) = \omega_m^n$ and $\nabla f = d^{\otimes} \circ f + f \circ d^{\otimes}$

TGTS 10-4-2024

An A_k -bialgebra is **strict** if $\nabla \omega_m^n = 0$ for all m and n

Let $3 \le k \le \infty$. An A_k -bialgebra consists of

- a dg vector space (H, d), where |d| = +1
- multilinear operations $\{\omega_m^n: H^{\otimes m} \to H^{\otimes n} \mid m+n \geq 3\}$,

where $|\omega_m^n| = 3 - m - n$ and $m + n \le k$ when $k < \infty$

structure maps

$$\{\alpha_m^n : (CC_*(KK_m^n), \partial) \to (Hom(H^{\otimes m}, H^{\otimes n}), \nabla)\},\$$

where $\alpha_m^n\left(\bigotimes_m^n\right) = \omega_m^n$ and $\nabla f = d^{\otimes} \circ f + f \circ d^{\otimes}$

An A_k -bialgebra is **strict** if $\nabla \omega_m^n = 0$ for all m and n

• A_k -algebras are A_{k+1} -bialgebras with $\omega_m^n = 0$ for all n > 1

TGTS 10-4-2024

Let $3 \le k \le \infty$. An A_k -bialgebra consists of

- a dg vector space (H, d), where |d| = +1
- multilinear operations $\{\omega_m^n: H^{\otimes m} \to H^{\otimes n} \mid m+n \geq 3\}$,

where $|\omega_m^n| = 3 - m - n$ and $m + n \le k$ when $k < \infty$

structure maps

$$\{\alpha_m^n : (CC_*(KK_m^n), \partial) \to (Hom(H^{\otimes m}, H^{\otimes n}), \nabla)\},\$$

where $\alpha_m^n\left(\bigotimes_m^n\right) = \omega_m^n$ and $\nabla f = d^{\otimes} \circ f + f \circ d^{\otimes}$

An A_k -bialgebra is **strict** if $\nabla \omega_m^n = 0$ for all m and n

• A_k -algebras are A_{k+1} -bialgebras with $\omega_m^n = 0$ for all n > 1

TGTS 10-4-2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• Strict A₄-bialgebras are graded Hopf algebras

• For simplicity denote $\mu:=\omega_2^1$ and $\Delta:=\omega_1^2$

• For simplicity denote $\mu:=\omega_2^1$ and $\Delta:=\omega_1^2$

• Let $\sigma_{m,n}$ denote the canonical permutation

$$(H_1 \otimes \cdots \otimes H_m)^{\otimes n} \approx H_1^{\otimes n} \otimes \cdots \otimes H_m^{\otimes n}$$

- For simplicity denote $\mu:=\omega_2^1$ and $\Delta:=\omega_1^2$

• Let $\sigma_{m,n}$ denote the canonical permutation

$$(H_1 \otimes \cdots \otimes H_m)^{\otimes n} \approx H_1^{\otimes n} \otimes \cdots \otimes H_m^{\otimes n}$$

 αⁿ_m identifies each cell of KKⁿ_m with a composition of ω-operations, e.g.,

$$\alpha_2^2\left(\diamondsuit \right) = (\mu \otimes \mu)\sigma_{2,2}(\Delta \otimes \Delta)$$

TGTS 10-4-2024

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- For simplicity denote $\mu:=\omega_2^1$ and $\Delta:=\omega_1^2$
- Let $\sigma_{m,n}$ denote the canonical permutation

$$(H_1 \otimes \cdots \otimes H_m)^{\otimes n} \approx H_1^{\otimes n} \otimes \cdots \otimes H_m^{\otimes n}$$

 αⁿ_m identifies each cell of KKⁿ_m with a composition of ω-operations, e.g.,

$$\alpha_2^2\left(\diamondsuit \right) = (\mu \otimes \mu)\sigma_{2,2}(\Delta \otimes \Delta)$$

• Combinatorics of *KK*ⁿ_m encode the *structure relation*

$$\nabla \omega_m^n = (\alpha_m^n \circ \partial) \left(\underbrace{\mathbf{X}}_{m}^{n} \right)$$

TGTS 10-4-2024

The Differential is a Biderivation

$$abla \mu = d\mu + \mu (d \otimes \mathbf{1} + \mathbf{1} \otimes d) = 0$$
 $d\mu = \mu (d \otimes \mathbf{1} + \mathbf{1} \otimes d)$

The Differential is a Biderivation

Dually, KK_1^2 is a point and d is a coderivation

$$\Delta d = (d \otimes \mathbf{1} + \mathbf{1} \otimes d) \Delta$$

TGTS 10-4-2024

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Differential is a Biderivation

Dually, KK_1^2 is a point and d is a coderivation

$$\Delta d = (d \otimes \mathbf{1} + \mathbf{1} \otimes d) \Delta$$

TGTS 10-4-2024

• The differential in an A_k-bialgebra is a biderivation

Homotopy Biassociativity

$$\nabla \omega_3^1 = \mu(\mu \otimes \mathbf{1}) + \mu(\mathbf{1} \otimes \mu)$$

Homotopy Biassociativity

• Strict A₄-bialgebras are biassociative

$$\mu(\mu \otimes \mathbf{1}) = \mu(\mathbf{1} \otimes \mu)$$

 $(\Delta \otimes \mathbf{1})\Delta = (\mathbf{1} \otimes \Delta)\Delta$

 Homotopy Compatibility

$$abla \omega_2^2 = \Delta \mu + (\mu \otimes \mu) \sigma_{2,2} (\Delta \otimes \Delta)$$

Homotopy Compatibility

$$abla \omega_2^2 = \Delta \mu + (\mu \otimes \mu) \sigma_{2,2} (\Delta \otimes \Delta)$$

• Strict A₄-bialgebras are dg Hopf algebras

$$\Delta \mu = (\mu \otimes \mu) \sigma_{2,2} (\Delta \otimes \Delta)$$

TGTS 10-4-2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Decoding the KK_3^2 Structure Relation

 $\nabla \omega_3^2 =$

$$\nabla \omega_3^2 = \Delta \omega_3^1 +$$

 $\nabla \omega_3^2 = \Delta \omega_3^1 + \omega_2^2 (\mu \otimes \mathbf{1} + \mathbf{1} \otimes \mu)$

$$egin{aligned}
abla \omega_3^2 &= \Delta \omega_3^1 + \omega_2^2 (\mu \otimes \mathbf{1} + \mathbf{1} \otimes \mu) \ &+ (\mu \otimes \mu) \sigma_{2,2} (\omega_2^2 \otimes \Delta + \Delta \otimes \omega_2^2) \end{aligned}$$

TGTS 10-4-2024 র া > র এ > র হ ৩৫৫

$$\begin{split} \nabla \omega_3^2 &= \Delta \omega_3^1 + \omega_2^2 (\mu \otimes \mathbf{1} + \mathbf{1} \otimes \mu) \\ &+ (\mu \otimes \mu) \sigma_{2,2} (\omega_2^2 \otimes \Delta + \Delta \otimes \omega_2^2) \\ &+ \left(\mu (\mu \otimes \mathbf{1}) \otimes \omega_3^1 + \omega_3^1 \otimes \mu (\mathbf{1} \otimes \mu) \right) \sigma_{2,3} \Delta^{\otimes 3} \end{split}$$

TGTS 10-4-2024 < □ > < @ > < ই > ব ই > ই তি ৭০ ি

$$\begin{aligned} \nabla \omega_3^2 &= \Delta \omega_3^1 + \omega_2^2 (\mu \otimes \mathbf{1} + \mathbf{1} \otimes \mu) \\ &+ (\mu \otimes \mu) \sigma_{2,2} (\omega_2^2 \otimes \Delta + \Delta \otimes \omega_2^2) \\ &+ \left(\mu (\mu \otimes \mathbf{1}) \otimes \omega_3^1 + \omega_3^1 \otimes \mu (\mathbf{1} \otimes \mu) \right) \sigma_{2,3} \Delta^{\otimes 3} \end{aligned}$$

• All structure relations are decoded in a similar way

TGTS 10-4-2024

ヘロト ヘロト ヘビト ヘビト

• Let $a_i \in H^i(S^i; \mathbb{Z}_2)$ and $b \in H^3(\Sigma \mathbb{C}P^2; \mathbb{Z}_2)$

• Let $a_i \in H^i\left(S^i; \mathbb{Z}_2\right)$ and $b \in H^3\left(\Sigma \mathbb{C}P^2; \mathbb{Z}_2\right)$

• Consider the total space X in the Postnikov system

$$\begin{array}{ccccc} \mathcal{K}(\mathbb{Z}_{2},4) & \longrightarrow & \mathcal{X} & \longrightarrow & \mathcal{L}\mathcal{K}(\mathbb{Z}_{2},5) \\ & & p \downarrow & & \downarrow \\ & & (S^{2} \times S^{3}) \vee \Sigma \mathbb{C}P^{2} & \xrightarrow{f} & \mathcal{K}(\mathbb{Z}_{2},5) \\ & & a_{2}a_{3} + Sq^{2}b & \xleftarrow{f^{*}} & \iota_{5} \end{array}$$

TGTS 10-4-2024 বিচার বিচার হি তাওওে

• Let $a_i \in H^i(S^i; \mathbb{Z}_2)$ and $b \in H^3(\Sigma \mathbb{C}P^2; \mathbb{Z}_2)$

• Consider the total space X in the Postnikov system

$$\begin{array}{cccccc} \mathcal{K}(\mathbb{Z}_{2},4) & \longrightarrow & \mathcal{X} & \longrightarrow & \mathcal{L}\mathcal{K}(\mathbb{Z}_{2},5) \\ & & p \downarrow & & \downarrow \\ & & (S^{2} \times S^{3}) \vee \Sigma \mathbb{C}P^{2} & \xrightarrow{f} & \mathcal{K}(\mathbb{Z}_{2},5) \\ & & a_{2}a_{3} + Sq^{2}b & \xleftarrow{f^{*}} & \iota_{5} \end{array}$$

TGTS 10-4-2024

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

•
$$H^*(X; \mathbb{Z}_2) = \{1, a_2, a_3, b, a_2a_3 = Sq^2b, \ldots\}$$

• Let $a_i \in H^i(S^i; \mathbb{Z}_2)$ and $b \in H^3(\Sigma \mathbb{C}P^2; \mathbb{Z}_2)$

• Consider the total space X in the Postnikov system

$$\begin{array}{ccccc} \mathcal{K}\left(\mathbb{Z}_{2},4\right) & \longrightarrow & \mathcal{X} & \longrightarrow & \mathcal{LK}\left(\mathbb{Z}_{2},5\right) \\ & & p \downarrow & & \downarrow \\ & & \left(S^{2} \times S^{3}\right) \vee \Sigma \mathbb{C}P^{2} & \xrightarrow{f} & \mathcal{K}\left(\mathbb{Z}_{2},5\right) \\ & & a_{2}a_{3} + Sq^{2}b & \xleftarrow{f^{*}} & \iota_{5} \end{array}$$

TGTS 10-4-2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

- $H^*(X; \mathbb{Z}_2) = \{1, a_2, a_3, b, a_2a_3 = Sq^2b, \ldots\}$
- H^{*} (ΩX; Z₂) is a graded Hopf algebra

A := H[∗] (X; ℤ₂) is a graded commutative algebra

- $A := H^*(X; \mathbb{Z}_2)$ is a graded commutative algebra
- The bar construction BA with standard differential d_{BA} and free coproduct Δ is a dg coalgebra

- $A := H^*(X; \mathbb{Z}_2)$ is a graded commutative algebra
- The bar construction BA with standard differential d_{BA} and free coproduct Δ is a dg coalgebra
- There is a perturbation μ of the shuffle product

 $sh([a]\otimes [b]):=[a|b]+[b|a],$

which acts as the shuffle product except

 $\mu([b] \otimes [b]) = [a_2a_3] = d_{BA}[a_2|a_3]$

TGTS 10-4-2024 < □ > < @ > < ই > < ই > ই তি ৭০ ↔

- $A := H^*(X; \mathbb{Z}_2)$ is a graded commutative algebra
- The bar construction BA with standard differential d_{BA} and free coproduct Δ is a dg coalgebra
- There is a perturbation μ of the shuffle product

 $sh([a]\otimes [b]):=[a|b]+[b|a],$

which acts as the shuffle product except

$$\mu([b] \otimes [b]) = [a_2 a_3] = d_{BA}[a_2 | a_3]$$

TGTS 10-4-2024

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• Let μ_H and Δ_H be the induced operations on $H := H^*(BA)$

- $A := H^*(X; \mathbb{Z}_2)$ is a graded commutative algebra
- The bar construction BA with standard differential d_{BA} and free coproduct Δ is a dg coalgebra
- There is a perturbation μ of the shuffle product

 $sh([a]\otimes [b]):=[a|b]+[b|a],$

which acts as the shuffle product except

$$\mu([b] \otimes [b]) = [a_2 a_3] = d_{BA}[a_2 | a_3]$$

TGTS 10-4-2024

• Let μ_H and Δ_H be the induced operations on $H := H^*(BA)$

(H, μ_H, Δ_H) ≈ H^{*} (ΩX; Z₂) as graded Hopf algebras

The Transfer Theorem (Saneblidze-U 2011)

For H as above, a cocycle-selecting map $g:H\to BA$ induces an $A_\infty\mbox{-bialgebra}$ structure

$$\omega = \{\omega_m^n : H^{\otimes m} \to H^{\otimes n}\}$$

The Transfer Theorem (Saneblidze-U 2011)

For H as above, a cocycle-selecting map $g:H\to BA$ induces an $A_\infty\mbox{-bialgebra}$ structure

$$\omega = \{\omega_m^n : H^{\otimes m} \to H^{\otimes n}\}$$

Proposition Denote $\alpha_{i-1} := cls[a_i]$ and $\beta := cls[b]$ in H.

Following the proof of the Transfer Theorem

The Transfer Theorem (Saneblidze-U 2011)

For H as above, a cocycle-selecting map $g:H\to BA$ induces an $A_\infty\mbox{-bialgebra}$ structure

$$\omega = \{\omega_m^n : H^{\otimes m} \to H^{\otimes n}\}$$

TGTS 10-4-2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Proposition Denote $\alpha_{i-1} := cls[a_i]$ and $\beta := cls[b]$ in H.

Following the proof of the Transfer Theorem

$$\omega_3^1(\beta \otimes \beta \otimes \alpha_1) = \alpha_1 |\alpha_2| \alpha_1$$

The Transfer Theorem (Saneblidze-U 2011)

For H as above, a cocycle-selecting map $g:H\to BA$ induces an $A_\infty\mbox{-bialgebra}$ structure

$$\omega = \{\omega_m^n : H^{\otimes m} \to H^{\otimes n}\}$$

Proposition Denote $\alpha_{i-1} := cls[a_i]$ and $\beta := cls[b]$ in H.

Following the proof of the Transfer Theorem

$$\begin{split} &\omega_3^1(\beta \otimes \beta \otimes \alpha_1) = \alpha_1 |\alpha_2| \alpha_1 \\ &\omega_2^2(\beta \otimes \beta) = \alpha_1 \otimes \alpha_2 \text{ and } \omega_1^3 \equiv 0 \end{split}$$

TGTS 10-4-2024 বিচার বিচার হি তাওিও

The Transfer Theorem (Saneblidze-U 2011)

For H as above, a cocycle-selecting map $g:H\to BA$ induces an $A_\infty\mbox{-bialgebra}$ structure

$$\omega = \{\omega_m^n : H^{\otimes m} \to H^{\otimes n}\}$$

Proposition Denote $\alpha_{i-1} := cls[a_i]$ and $\beta := cls[b]$ in H.

Following the proof of the Transfer Theorem

$$\begin{split} &\omega_3^1(\beta \otimes \beta \otimes \alpha_1) = \alpha_1 |\alpha_2| \alpha_1 \\ &\omega_2^2(\beta \otimes \beta) = \alpha_1 \otimes \alpha_2 \text{ and } \omega_1^3 \equiv 0 \end{split}$$

• $(H, \mu_H, \Delta_H, \omega_3^1, \omega_2^2)$ is a "Gerstenhaber-Schack bialgebra"

TGTS 10-4-2024

The **Gerstenhaber-Schack** (G-S) **Complex** of a dg Hopf algebra (H, d, μ, Δ) is the triple complex

 $(Hom^*(H^{\otimes m}, H^{\otimes n}), \nabla, \partial, \delta)$

where

The **Gerstenhaber-Schack** (G-S) **Complex** of a dg Hopf algebra (H, d, μ, Δ) is the triple complex

 $(Hom^*(H^{\otimes m}, H^{\otimes n}), \nabla, \partial, \delta)$

where

 ∇ is induced by d

The **Gerstenhaber-Schack** (G-S) **Complex** of a dg Hopf algebra (H, d, μ, Δ) is the triple complex

 $(Hom^*(H^{\otimes m}, H^{\otimes n}), \nabla, \partial, \delta)$

where

 ∇ is induced by d

 ∂ is induced by the bar differential

The **Gerstenhaber-Schack** (G-S) **Complex** of a dg Hopf algebra (H, d, μ, Δ) is the triple complex

 $(Hom^*(H^{\otimes m}, H^{\otimes n}), \nabla, \partial, \delta)$

where

 ∇ is induced by d

- ∂ is induced by the bar differential
- δ is induced by the cobar differential

The **Gerstenhaber-Schack** (G-S) **Complex** of a dg Hopf algebra (H, d, μ, Δ) is the triple complex

 $(Hom^*(H^{\otimes m}, H^{\otimes n}), \nabla, \partial, \delta)$

where

 ∇ is induced by d

 ∂ is induced by the bar differential

 δ is induced by the cobar differential

• Total differential $D := \nabla + \partial + \delta$

The **Gerstenhaber-Schack** (G-S) **Complex** of a dg Hopf algebra (H, d, μ, Δ) is the triple complex

 $(Hom^*(H^{\otimes m}, H^{\otimes n}), \nabla, \partial, \delta)$

where

 ∇ is induced by d ∂ is induced by the bar differential δ is induced by the cobar differential

- Total differential $D := \nabla + \partial + \delta$
- The subspace of total *r*-cochains in degree *p*

$$C_{GS}^{r,p}(H,H) := \bigoplus_{p+m+n=r+1} Hom^{p}(H^{\otimes m}, H^{\otimes n})$$

TGTS 10-4-2024

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

The **Gerstenhaber-Schack** (G-S) **Complex** of a dg Hopf algebra (H, d, μ, Δ) is the triple complex

 $(Hom^*(H^{\otimes m}, H^{\otimes n}), \nabla, \partial, \delta)$

where

 ∇ is induced by *d* ∂ is induced by the bar differential δ is induced by the cobar differential

- Total differential $D := \nabla + \partial + \delta$
- The subspace of total *r*-cochains in degree *p*

$$C_{GS}^{r,p}(H,H) := \bigoplus_{p+m+n=r+1} Hom^{p}(H^{\otimes m}, H^{\otimes n})$$

• The r^{th} G-S cohomology group in degree p

$$H_{GS}^{r,p}(H;H) := H^*\left(C_{GS}^{r,p}(H,H),D\right) \xrightarrow{\text{TGTS 10-4-2024}}$$

A 2-Cocycle with $m + n \leq 4$

TGTS 10-4-2024 < □ > < @ > < ছ > < ছ > ছ ৩৭৫

$$\begin{aligned} \nabla \omega_3^2 &= \omega_2^2 (\mu \otimes \mathbf{1} + \mathbf{1} \otimes \mu) + (\mu \otimes \mu) \sigma_{2,2} (\omega_2^2 \otimes \Delta + \Delta \otimes \omega_2^2) \\ &+ \Delta \omega_3^1 + \left(\mu (\mu \otimes \mathbf{1}) \otimes \omega_3^1 + \omega_3^1 \otimes \mu (\mathbf{1} \otimes \mu) \right) \sigma_{2,3} \Delta^{\otimes 3} \end{aligned}$$

$$\begin{aligned} \nabla \omega_3^2 &= \omega_2^2 (\mu \otimes \mathbf{1} + \mathbf{1} \otimes \mu) + (\mu \otimes \mu) \sigma_{2,2} (\omega_2^2 \otimes \Delta + \Delta \otimes \omega_2^2) \\ &+ \Delta \omega_3^1 + \left(\mu (\mu \otimes \mathbf{1}) \otimes \omega_3^1 + \omega_3^1 \otimes \mu (\mathbf{1} \otimes \mu) \right) \sigma_{2,3} \Delta^{\otimes 3} \end{aligned}$$

By definition

$$\partial \omega_2^2 = \omega_2^2 (\mu \otimes \mathbf{1} + \mathbf{1} \otimes \mu) + (\mu \otimes \mu) \sigma_{2,2} (\omega_2^2 \otimes \Delta + \Delta \otimes \omega_2^2)$$

$$\begin{aligned} \nabla \omega_3^2 &= \omega_2^2 (\mu \otimes \mathbf{1} + \mathbf{1} \otimes \mu) + (\mu \otimes \mu) \sigma_{2,2} (\omega_2^2 \otimes \Delta + \Delta \otimes \omega_2^2) \\ &+ \Delta \omega_3^1 + \left(\mu (\mu \otimes \mathbf{1}) \otimes \omega_3^1 + \omega_3^1 \otimes \mu (\mathbf{1} \otimes \mu) \right) \sigma_{2,3} \Delta^{\otimes 3} \end{aligned}$$

By definition

$$\partial \omega_2^2 = \omega_2^2 (\mu \otimes \mathbf{1} + \mathbf{1} \otimes \mu) + (\mu \otimes \mu) \sigma_{2,2} (\omega_2^2 \otimes \Delta + \Delta \otimes \omega_2^2)$$
$$\delta \omega_3^1 = \Delta \omega_3^1 + (\mu(\mu \otimes \mathbf{1}) \otimes \omega_3^1 + \omega_3^1 \otimes \mu(\mathbf{1} \otimes \mu)) \sigma_{2,3} \Delta^{\otimes 3}$$

$$\begin{aligned} \nabla \omega_3^2 &= \omega_2^2 (\mu \otimes \mathbf{1} + \mathbf{1} \otimes \mu) + (\mu \otimes \mu) \sigma_{2,2} (\omega_2^2 \otimes \Delta + \Delta \otimes \omega_2^2) \\ &+ \Delta \omega_3^1 + \left(\mu (\mu \otimes \mathbf{1}) \otimes \omega_3^1 + \omega_3^1 \otimes \mu (\mathbf{1} \otimes \mu) \right) \sigma_{2,3} \Delta^{\otimes 3} \end{aligned}$$

By definition

$$\partial \omega_2^2 = \omega_2^2 (\mu \otimes \mathbf{1} + \mathbf{1} \otimes \mu) + (\mu \otimes \mu) \sigma_{2,2} (\omega_2^2 \otimes \Delta + \Delta \otimes \omega_2^2)$$
$$\delta \omega_3^1 = \Delta \omega_3^1 + (\mu(\mu \otimes \mathbf{1}) \otimes \omega_3^1 + \omega_3^1 \otimes \mu(\mathbf{1} \otimes \mu)) \sigma_{2,3} \Delta^{\otimes 3}$$

• The KK_3^2 structure relation in terms of G-S differentials is

$$\nabla\omega_3^2 = \partial\omega_2^2 + \delta\omega_3^1$$

TGTS 10-4-2024 ∢□▶∢∰▶∢≣▶∢≣▶ ≣ ∽੧<

$$\begin{aligned} \nabla \omega_3^2 &= \omega_2^2 (\mu \otimes \mathbf{1} + \mathbf{1} \otimes \mu) + (\mu \otimes \mu) \sigma_{2,2} (\omega_2^2 \otimes \Delta + \Delta \otimes \omega_2^2) \\ &+ \Delta \omega_3^1 + \left(\mu (\mu \otimes \mathbf{1}) \otimes \omega_3^1 + \omega_3^1 \otimes \mu (\mathbf{1} \otimes \mu) \right) \sigma_{2,3} \Delta^{\otimes 3} \end{aligned}$$

By definition

$$\partial \omega_2^2 = \omega_2^2 (\mu \otimes \mathbf{1} + \mathbf{1} \otimes \mu) + (\mu \otimes \mu) \sigma_{2,2} (\omega_2^2 \otimes \Delta + \Delta \otimes \omega_2^2)$$
$$\delta \omega_3^1 = \Delta \omega_3^1 + (\mu(\mu \otimes \mathbf{1}) \otimes \omega_3^1 + \omega_3^1 \otimes \mu(\mathbf{1} \otimes \mu)) \sigma_{2,3} \Delta^{\otimes 3}$$

• The KK_3^2 structure relation in terms of G-S differentials is

$$\nabla \omega_3^2 = \partial \omega_2^2 + \delta \omega_3^1$$

TGTS 10-4-2024

• Other relations with m + n = 5 have similar representations

$$KK_1^4: \qquad \nabla \omega_1^4 = \delta \omega_1^3 \qquad \stackrel{\nabla \omega = 0}{\Rightarrow} \qquad \delta \omega_1^3 = 0$$

$$\begin{split} & \mathsf{K}\mathsf{K}_1^4: \qquad \nabla \omega_1^4 = \delta \omega_1^3 \qquad \stackrel{\nabla \omega = 0}{\Rightarrow} \qquad \delta \omega_1^3 = 0 \\ & \mathsf{K}\mathsf{K}_2^3: \qquad \nabla \omega_2^3 = \partial \omega_1^3 + \delta \omega_2^2 \qquad \Rightarrow \qquad \partial \omega_1^3 + \delta \omega_2^2 = 0 \end{split}$$

$$\begin{split} & \mathsf{K}\mathsf{K}_1^4: \quad \nabla \omega_1^4 = \delta \omega_1^3 \quad \stackrel{\nabla \omega = 0}{\Rightarrow} \quad \delta \omega_1^3 = 0 \\ & \mathsf{K}\mathsf{K}_2^3: \quad \nabla \omega_2^3 = \partial \omega_1^3 + \delta \omega_2^2 \quad \Rightarrow \quad \partial \omega_1^3 + \delta \omega_2^2 = 0 \\ & \mathsf{K}\mathsf{K}_3^2: \quad \nabla \omega_3^2 = \partial \omega_2^2 + \delta \omega_3^1 \quad \Rightarrow \quad \partial \omega_2^2 + \delta \omega_3^1 = 0 \end{split}$$

$$\begin{split} & \mathsf{K}\mathsf{K}_1^4: \qquad \nabla \omega_1^4 = \delta \omega_1^3 \qquad \stackrel{\nabla \omega = 0}{\Rightarrow} \qquad \delta \omega_1^3 = 0 \\ & \mathsf{K}\mathsf{K}_2^3: \qquad \nabla \omega_2^3 = \partial \omega_1^3 + \delta \omega_2^2 \qquad \Rightarrow \qquad \partial \omega_1^3 + \delta \omega_2^2 = 0 \\ & \mathsf{K}\mathsf{K}_3^2: \qquad \nabla \omega_3^2 = \partial \omega_2^2 + \delta \omega_3^1 \qquad \Rightarrow \qquad \partial \omega_2^2 + \delta \omega_3^1 = 0 \\ & \mathsf{K}\mathsf{K}_4^1: \qquad \nabla \omega_4^1 = \partial \omega_3^1 \qquad \Rightarrow \qquad \partial \omega_3^1 = 0 \end{split}$$

Structure Relations with m + n = 5

$$\begin{split} & \mathsf{K}\mathsf{K}_1^4: \quad \nabla \omega_1^4 = \delta \omega_1^3 \quad \stackrel{\nabla \omega = 0}{\Rightarrow} \quad \delta \omega_1^3 = 0 \\ & \mathsf{K}\mathsf{K}_2^3: \quad \nabla \omega_2^3 = \partial \omega_1^3 + \delta \omega_2^2 \quad \Rightarrow \quad \partial \omega_1^3 + \delta \omega_2^2 = 0 \\ & \mathsf{K}\mathsf{K}_3^2: \quad \nabla \omega_3^2 = \partial \omega_2^2 + \delta \omega_3^1 \quad \Rightarrow \quad \partial \omega_2^2 + \delta \omega_3^1 = 0 \\ & \mathsf{K}\mathsf{K}_4^1: \quad \nabla \omega_4^1 = \partial \omega_3^1 \quad \Rightarrow \quad \partial \omega_3^1 = 0 \end{split}$$

• In strict A₅-bialgebras $D(\omega_3^1 + \omega_2^2 + \omega_1^3) = \partial(\omega_3^1 + \omega_2^2 + \omega_1^3) + \delta(\omega_3^1 + \omega_2^2 + \omega_1^3)$ $= \delta\omega_1^3 + (\partial\omega_1^3 + \delta\omega_2^2) + (\partial\omega_2^2 + \delta\omega_3^1) + \partial\omega_3^1 = 0$

TGTS 10-4-2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Structure Relations with m + n = 5

$$\begin{split} & \mathsf{K}\mathsf{K}_1^4: \quad \nabla \omega_1^4 = \delta \omega_1^3 \quad \stackrel{\nabla \omega = 0}{\Rightarrow} \quad \delta \omega_1^3 = 0 \\ & \mathsf{K}\mathsf{K}_2^3: \quad \nabla \omega_2^3 = \partial \omega_1^3 + \delta \omega_2^2 \quad \Rightarrow \quad \partial \omega_1^3 + \delta \omega_2^2 = 0 \\ & \mathsf{K}\mathsf{K}_3^2: \quad \nabla \omega_3^2 = \partial \omega_2^2 + \delta \omega_3^1 \quad \Rightarrow \quad \partial \omega_2^2 + \delta \omega_3^1 = 0 \\ & \mathsf{K}\mathsf{K}_4^1: \quad \nabla \omega_4^1 = \partial \omega_3^1 \quad \Rightarrow \quad \partial \omega_3^1 = 0 \end{split}$$

• In strict A₅-bialgebras $D(\omega_3^1 + \omega_2^2 + \omega_1^3) = \partial(\omega_3^1 + \omega_2^2 + \omega_1^3) + \delta(\omega_3^1 + \omega_2^2 + \omega_1^3)$ $= \delta\omega_1^3 + (\partial\omega_1^3 + \delta\omega_2^2) + (\partial\omega_2^2 + \delta\omega_3^1) + \partial\omega_3^1 = 0$

• ω_3^1 , ω_2^2 , ω_1^3 satisfy the strict A₅-bialgebra structure relations iff

TGTS 10-4-2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Structure Relations with m + n = 5

- $$\begin{split} & \mathsf{K}\mathsf{K}_1^4: \quad \nabla \omega_1^4 = \delta \omega_1^3 \quad \stackrel{\nabla \omega = 0}{\Rightarrow} \quad \delta \omega_1^3 = 0 \\ & \mathsf{K}\mathsf{K}_2^3: \quad \nabla \omega_2^3 = \partial \omega_1^3 + \delta \omega_2^2 \quad \Rightarrow \quad \partial \omega_1^3 + \delta \omega_2^2 = 0 \\ & \mathsf{K}\mathsf{K}_3^2: \quad \nabla \omega_3^2 = \partial \omega_2^2 + \delta \omega_3^1 \quad \Rightarrow \quad \partial \omega_2^2 + \delta \omega_3^1 = 0 \\ & \mathsf{K}\mathsf{K}_4^1: \quad \nabla \omega_4^1 = \partial \omega_3^1 \quad \Rightarrow \quad \partial \omega_3^1 = 0 \end{split}$$
- In strict A₅-bialgebras $D(\omega_3^1 + \omega_2^2 + \omega_1^3) = \partial(\omega_3^1 + \omega_2^2 + \omega_1^3) + \delta(\omega_3^1 + \omega_2^2 + \omega_1^3)$ $= \delta\omega_1^3 + (\partial\omega_1^3 + \delta\omega_2^2) + (\partial\omega_2^2 + \delta\omega_3^1) + \partial\omega_3^1 = 0$
- ω_3^1 , ω_2^2 , ω_1^3 satisfy the strict A₅-bialgebra structure relations iff $\omega_3^1 + \omega_2^2 + \omega_1^3$ is the deg -1 component of a strict 2-cocycle

The Degree -1 Component of a Strict 2-Cocycle

$$\begin{split} \delta\omega_1^3 &= 0 \\ \uparrow \\ \omega_1^3 &\longrightarrow \partial\omega_1^3 + \delta\omega_2^2 &= 0 \\ & \uparrow \\ \omega_2^2 &\longrightarrow \partial\omega_2^2 + \delta\omega_3^1 &= 0 \\ & & \uparrow \\ \omega_3^1 &\longrightarrow \partial\omega_3^1 &= 0 \\ D(\omega_3^1 + \omega_2^2 + \omega_1^3) &= 0 \end{split}$$

TGTS 10-4-2024 ∢□▷∢률▷∢≣▷∢≣▷ ≣ ୬९୯관

Gerstenhaber-Schack Bialgebras

An A_4 -bialgebra $(H, \mu, \Delta, \omega_3^1, \omega_2^2, \omega_1^3)$ is a **Gerstenhaber-Schack bialgebra** if

$$D(\omega_3^1+\omega_2^2+\omega_1^3)=0$$

Gerstenhaber-Schack Bialgebras

An A_4 -bialgebra $(H, \mu, \Delta, \omega_3^1, \omega_2^2, \omega_1^3)$ is a **Gerstenhaber-Schack bialgebra** if

$$D(\omega_3^1+\omega_2^2+\omega_1^3)=0$$

Application Since the induced operations $\omega_3^1, \omega_2^2, \omega_1^3 \equiv 0$ on $H \approx H^*(\Omega X; \mathbb{Z}_2)$ satisfy the strict A₅-bialgebra structure relations, $D(\omega_3^1 + \omega_2^2 + \omega_1^3) = 0$. Therefore

TGTS 10-4-2024

A D N A 目 N A E N A E N A B N A C N

Gerstenhaber-Schack Bialgebras

An A_4 -bialgebra $(H, \mu, \Delta, \omega_3^1, \omega_2^2, \omega_1^3)$ is a **Gerstenhaber-Schack bialgebra** if

$$D(\omega_3^1+\omega_2^2+\omega_1^3)=0$$

Application Since the induced operations $\omega_3^1, \omega_2^2, \omega_1^3 \equiv 0$ on $H \approx H^*(\Omega X; \mathbb{Z}_2)$ satisfy the strict A₅-bialgebra structure relations, $D(\omega_3^1 + \omega_2^2 + \omega_1^3) = 0$. Therefore

TGTS 10-4-2024

•
$$(H, \mu_H, \Delta_H, \omega_3^1, \omega_2^2)$$
 is a G-S bialgebra

 A G-S extension of a graded Hopf algebra (H, μ, Δ) is a G-S bialgebra (H, μ, Δ, ω := {ω₁¹, ω₂², ω₁³})

- A G-S extension of a graded Hopf algebra (H, μ, Δ) is a G-S bialgebra $(H, \mu, \Delta, \omega := \{\omega_3^1, \omega_2^2, \omega_1^3\})$
- G-S extensions ω and ω' are equivalent if there exists an isomorphism Φ : (H, μ, Δ, ω) ⇒ (H, μ, Δ, ω') of A₄-bialgebras

TGTS 10-4-2024

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- A G-S extension of a graded Hopf algebra (H, μ, Δ) is a G-S bialgebra (H, μ, Δ, ω := {ω₁¹, ω₂², ω₁³})
- G-S extensions ω and ω' are equivalent if there exists an isomorphism Φ : (H, μ, Δ, ω) ⇒ (H, μ, Δ, ω') of A₄-bialgebras
- A G-S extension ω is trivial if $(H, \mu, \Delta, \omega) \cong (H, \mu, \Delta)$

- A G-S extension of a graded Hopf algebra (H, μ, Δ) is a G-S bialgebra (H, μ, Δ, ω := {ω₁¹, ω₂², ω₁³})
- G-S extensions ω and ω' are equivalent if there exists an isomorphism Φ : (H, μ, Δ, ω) ⇒ (H, μ, Δ, ω') of A₄-bialgebras
- A G-S extension ω is trivial if $(H, \mu, \Delta, \omega) \cong (H, \mu, \Delta)$

Theorem Given a graded Hopf algebra (H, μ, Δ) and multilinear operations $\omega := \{\omega_3^1, \omega_2^2, \omega_1^3\}$, let $z := \omega_3^1 + \omega_2^2 + \omega_1^3$. Then

TGTS 10-4-2024

▲□▶ ▲冊▶ ▲臣▶ ▲臣▶ 三臣 - 釣�?

- 1. ω is a G-S extension iff Dz = 0
- 2. G-S extensions $\omega \sim \omega'$ iff cls(z z') = 0

- A G-S extension of a graded Hopf algebra (H, μ, Δ) is a G-S bialgebra (H, μ, Δ, ω := {ω₁¹, ω₂², ω₁³})
- G-S extensions ω and ω' are equivalent if there exists an isomorphism Φ : (H, μ, Δ, ω) ⇒ (H, μ, Δ, ω') of A₄-bialgebras
- A G-S extension ω is trivial if $(H, \mu, \Delta, \omega) \cong (H, \mu, \Delta)$

Theorem Given a graded Hopf algebra (H, μ, Δ) and multilinear operations $\omega := \{\omega_3^1, \omega_2^2, \omega_1^3\}$, let $z := \omega_3^1 + \omega_2^2 + \omega_1^3$. Then

- 1. ω is a G-S extension iff Dz = 0
- 2. G-S extensions $\omega \sim \omega'$ iff cls(z z') = 0

Corollary A G-S extension ω is trivial iff cls(z) = 0

TGTS 10-4-2024 ∢□▶∢률▶∢≣▶∢≣▶ ≣ ∽Q@

- A G-S extension of a graded Hopf algebra (H, μ, Δ) is a G-S bialgebra (H, μ, Δ, ω := {ω₁¹, ω₂², ω₁³})
- G-S extensions ω and ω' are equivalent if there exists an isomorphism Φ : (H, μ, Δ, ω) ⇒ (H, μ, Δ, ω') of A₄-bialgebras
- A G-S extension ω is trivial if $(H, \mu, \Delta, \omega) \cong (H, \mu, \Delta)$

Theorem Given a graded Hopf algebra (H, μ, Δ) and multilinear operations $\omega := \{\omega_3^1, \omega_2^2, \omega_1^3\}$, let $z := \omega_3^1 + \omega_2^2 + \omega_1^3$. Then

- 1. ω is a G-S extension iff Dz = 0
- 2. G-S extensions $\omega \sim \omega'$ iff cls(z z') = 0

Corollary A G-S extension ω is trivial iff cls(z) = 0**Application** The G-S extension ω of $H \approx H^*(\Omega X; \mathbb{Z}_2)$ is non-trivial

TGTS 10-4-2024

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

The differentials ∇ , ∂ , and δ in the G-S complex express the interactions of a higher order operation with the underlying dg Hopf algebra structure, but completely miss its interactions with the higher order structure.

The differentials ∇ , ∂ , and δ in the G-S complex express the interactions of a higher order operation with the underlying dg Hopf algebra structure, but completely miss its interactions with the higher order structure.

Consequently, the KK_m^n structure relations cannot be expressed in terms of the G-S differentials when $m + n \ge 6$.

TGTS 10-4-2024

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The differentials ∇ , ∂ , and δ in the G-S complex express the interactions of a higher order operation with the underlying dg Hopf algebra structure, but completely miss its interactions with the higher order structure.

Consequently, the KK_m^n structure relations cannot be expressed in terms of the G-S differentials when $m + n \ge 6$.

A potential remedy might be to extend the G-S complex to a multicomplex with additional differentials defined in terms of the higher order operations.

TGTS 10-4-2024

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

The differentials ∇ , ∂ , and δ in the G-S complex express the interactions of a higher order operation with the underlying dg Hopf algebra structure, but completely miss its interactions with the higher order structure.

Consequently, the KK_m^n structure relations cannot be expressed in terms of the G-S differentials when $m + n \ge 6$.

A potential remedy might be to extend the G-S complex to a multicomplex with additional differentials defined in terms of the higher order operations.

Finally, it would be nice to have a family of spaces X_k whose cohomology admits an A_k but not an A_{k+1} -bialgebra structure. I'll leave this problem for homework!

TGTS 10-4-2024 বিচার বিচার হি তাওওে

References

- Gerstenhaber, M., Schack, S.D.: Algebras, bialgebras, quantum groups, and algebraic deformations. In "Contemp. Math." 134, AMS, Providence, RI (1992).
- Saneblidze, S., Umble, R.: Framed matrices and A_∞-bialgebras. Adv. Studies: Euro-Tbilisi Math. J. 15(4), 41-140 (2022)
- Stasheff, J.: Homotopy associativity of *H*-spaces I, II. Trans. AMS **108**, 275-312 (1963)
- Umble, R.: The deformation complex for differential graded Hopf algebras. J. Pure Appl. Algebra **106**, 199-222 (1996)

TGTS 10-4-2024

• Umble, R.: Gerstenhaber-Schack bialgebras. https://arxiv.org/abs/2401.17771

THANK YOU!

