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Diagonal Approximations

• Consider a regular cell complex X whose k-cells are k-dim’l
polytopes

X is a simplicial complex if its k-cells are k-simplices

X is a cubical complex if its k-cells are k-cubes

• The geometric diagonal on X is the map ∆ : x 7→ (x , x)

• A diagonal approximation on X is a cellular map
∆X : X → X × X homotopic to ∆

• ∆X induces a chain map of cellular chains

∆X : (C∗ (X ) ∂)→ (C∗ (X )⊗ C∗ (X ) , ∂ ⊗ 1 + 1⊗ ∂)

called a diagonal on (C∗ (X ) , ∂)
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Alexander-Whitney and Serre Diagonals

∆S (01 · · · n) =
n∑

i=0
01 · · · i × i · · · n;

012
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∆S (012) = 0× 012 + 01× 12 + 012× 2
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Alexander-Whitney and Serre Diagonals

∆S (01 · · · n) =
n∑

i=0
01 · · · i×i · · · n; ∆I (In) =

∑
(u1,...,un)∈{0,I}×n

±u1 · · · un×u′1 · · · u′n

(0′ = I, I′ = 1)
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The Associahedron Kn

Kn is an (n − 2)-dimensional contractible polytope constructed by
J. Stasheff (1963) whose faces are indexed by planar rooted trees
(PRTs) with n leaves
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A∞-Algebras

• Let X be a basepointed space

• The multiplication in ΩX induces a multiplication in S∗(ΩX )
associative up to homotopy
• S∗(ΩX ) is an example of an “A∞-algebra”
• An A∞-algebra consists of

(i) a dg vector space (A, d)

(ii) a family of multilinear operations {mn : A⊗n → A},
where |mn| = n − 2

(iii) a family of chain maps

α =
{
αn : (C∗ (Kn) , ∂)→

(
Hom

(
A⊗n,A

)
, δ
)}
,

where αn

(
...{

n

)
= mn and δ (f ) = d ◦ f − (−1)|f | f ◦ d⊗
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The Chain Map α

• The chain map α identifies each cell of K with a composition
of A∞-operations

• For example, α identifies the 1-cell [0, 1] of K3 with the
operation m3 and its vertices 0 and 1 with the compostions
m2(m2 ⊗ 1) and m2(1⊗m2) in the following way:

In C∗(K3), the 1-cell of K3 is represented by tree and its
vertices by the trees

:= ( ⊗ 1) and := (1⊗ )

Then α( ) = m3,

α( ) = m2(m2 ⊗ 1) and α( ) = m2(1⊗m2)
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Structure Relations

• The combinatorics of K = {Kn} encode the structure
relations in an A∞-algebra

• For example,

d ◦m3 −m3 ◦ d⊗ = δ (m3)

= (δ ◦ α) ( ) = (α ◦ ∂) ( )

= α ( − ) = (m2(1⊗m2)−m2(m2 ⊗ 1)

• m3 is a chain homotopy from m2(m2 ⊗ 1) to m2(1⊗m2)
called the associator
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TGTS

Tensor Product of A∞-Algebras

• Given A∞-algebras (A, α) and (B, β) and a diagonal

∆K : C∗ (K )→ C∗ (K )⊗ C∗ (K ), the composition

C∗ (Kn)
γ

99K Hom
(

(A⊗ B)⊗n ,A⊗ B
)

∆K ↓ ↑ ≈

C∗ (Kn)⊗ C∗ (Kn) −→
α⊗β

Hom (A⊗n,A)⊗ Hom (B⊗n,B)

defines the A∞-algebra (A⊗ B, γ)

• ∆K is the essential ingredient in the tensor product
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TGTS

Historical Context

• S-U (2004) were the first to construct a cellular
combinatorial/differential graded formula for ∆K

• Markl and Shnider (2006) were the first to prove the “magical
formula” for ∆′K proposed by J-L Loday, whose components
are “matching pairs” of faces of matching dimensions
comparable with respect to Tamari order

• Masuda, Thomas, Tonks, and Vallette (2021) were the first to
construct a point-set topological diagonal map, which
descends to the magical formula at the cellular level

• Our proof that ∆K = ∆′K views the permutahedron Pn as a
subdivision of Kn+1 and appeals to the combinatorics of Pn
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The Permutahedron Pn

Pn is an (n − 1)-dimensional polytope constructed by P. Schoute
(1911) whose faces are indexed either by planar rooted leveled trees
(PLTs) with n + 1 leaves or ordered partitions of n := {1, 2, . . . , n}
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The Permutahedron P3



TGTS

Partitions and PLTs
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Inductive Construction of Pn

•

1|2 12 2|11
P1 P2 = P1 × I

•

•

•

•

•

•

123

1|2|3

1|3|2

3|1|2

2|1|3

2|3|1

3|2|1

1|23

3|12

13|2 23|1

2|13

12|3

P3 as a subdivision of P2 × I
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Inductive Construction of Pn

• • •

• • • • • • •
• • • •

• • • • •
•

• • •

•

•

•

• •

•
•

•

• • •

124|3

12|34

24|13

2|134

4|123

123|4

234|1

23|14

34|12

3|124

134|2

13|24

14|23

1|234

P4 as a Subdivision of P3 × I
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Tonks’ Projection

• Tonks’ projection θ : Pn → Kn+1 is given by forgetting levels

• On P3 we have

θ
( )

= θ
( )

= θ
( )

=

• A diagonal ∆P on Pn induces a diagonal ∆K on Kn+1 :

∆K

(
...{

n+1

)
:= θ × θ

(
∆P

(
...{

n+1

))
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Pn as a Subdivision of Kn+1

• Tonks’ projection applied to Pn as a subdivision of In−1

allows us to view Kn+1 as a subdivision of In−1 as well...

• And to view Pn as a subdivision of Kn+1

K
4
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Associahedral and Subdivision Cells of Pn

• An associahedral k-cell of Pn is a k-face of Kn+1

• A subdivision k-cell of Pn is a k-cell of some associahedral
k-cell

• A non-degenerate vertex is an associahedral vertex

• A positive dimensional cell e ⊆ Pn is non-degenerate if
|θ(e)| = |e|

P
3

:
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subdivision 1-cell

Degenerate vertex

subdivision 1-cell
Non-degenerate
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Tamari Order
• The vertices of Pn are identified with the permutations in Sn

• The weak order on Sn given by

· · · |xi |xi+1| · · · < · · · |xi+1|xi | · · · if xi < xi+1

induces a p.o. on vertices and orients the 1-skeleton of Pn

• Let min e and max e denote the minimal and maximal
vertices of a face e

• For example, min n = 1|2| · · · |n and max n = n| · · · |2|1

• Define e ≤ e′ if ∃ an oriented edge-path from max e to min e′

• θ induces a weak order on the faces {θ(ei )} ⊂ Kn+1 :

θ(ei ) ≤ θ(ej) if ei ≤ ej

• Tamari order is the restriction of weak order to vertices
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Strong Complementary Pairs

• Consider a vertex σ = x1| · · · |xn

• Reading from left-to-right and from right-to-left, construct
the partitions ←−σ 1| · · · |←−σ p and −→σ q| · · · |−→σ 1 of maximal
decreasing subsets

• Form the Strong Complementary Pair (SCP)

aσ × bσ :=←−σ 1| · · · |←−σ p ×−→σ q| · · · |−→σ 1

• For example, the SCP associated with σ = 4|2|1|3 is

aσ × bσ =←−σ 1|←−σ 2 ×−→σ 3|−→σ 2|−→σ 1 = 421|3× 4|2|13
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Properties of SCPs

The SCP associated with 4|2|1|3 is 421|3× 4|2|13

In general, for an SCP aσ × bσ :=←−σ 1| · · · |←−σ p ×−→σ q| · · · |−→σ 1

• p + q = n + 1

• σ = max aσ = min bσ

• min←−σ i < max←−σ i+1 for all i < p (i increases left-to-right)

• min−→σ j < max−→σ j+1 for all j < q (j increases right-to-left)
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TGTS

Step Matrix Representation

Given an SCP A1| · · · |Ap ×Bq| · · · |B1, construct the corresponding
q × p step matrix representation :

Step matrix representation of 38|24|5|17|6× 8|34|257|16

1 6
2 5 7

3 4
8

1. List the elements of A1 contiguously, increasing and flush
down in column 1

2. List the elements of Ai contiguously and increasing in column
i with max Ai in the row of min Ai−1



TGTS

Step Matrix Representation

Given an SCP A1| · · · |Ap ×Bq| · · · |B1, construct the corresponding
q × p step matrix representation :

Step matrix representation of 38|24|5|17|6× 8|34|257|16

1 6
2 5 7

3 4
8

1. List the elements of A1 contiguously, increasing and flush
down in column 1

2. List the elements of Ai contiguously and increasing in column
i with max Ai in the row of min Ai−1



TGTS

Step Matrix Representation

Given an SCP A1| · · · |Ap ×Bq| · · · |B1, construct the corresponding
q × p step matrix representation :

Step matrix representation of 38|24|5|17|6× 8|34|257|16

1 6
2 5 7

3 4
8

1. List the elements of A1 contiguously, increasing and flush
down in column 1

2. List the elements of Ai contiguously and increasing in column
i with max Ai in the row of min Ai−1



TGTS

Derived Matrices

Given the step matrix representation of an SCP A1| · · · |Ap
×Bq| · · · |B1, iteratively contruct a q × p derived matrix :

1 6
2 5 7

3 4
8

−→

1 6
2

3 4 5 7
8

Derived matrix with M1 = M2 = {8},N2 = {5, 7}

1. For each i , choose a subset Mi ⊆ Ai r min Ai

If min Mi > max Ai+1 shift Mi right one column

2. For each j , choose a subset Nj ⊆ Bj r min Bj

If min Nj > max Bj+1 shift Nj down one row
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Complementary Pairs

Given a q × p derived matrix with columns A′1 · · · A′p and rows
B′1 · · · B′q, the corresponding complementary pair (CP) is

A′1| · · · |A′p × B′q| · · · |B′1

1 6
2

3 4 5 7
8

↔ 3|24|58|17|6× 8|3457|2|16
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Effect of Shift Actions on Pn × Pn

1 3
2
4

•

•

•

•

•

•

•

• •

124|3

4|2|13

124|3× 4|2|13 ←→
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Right-Shifts Decrease Order of Left Factors

1 3
2

4
•

•

•

•

•

•

•

• •

12|34

4|2|13
N

N
12|34× 4|2|13 ←→
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Down-Shifts Increase Order of Right Factors

1
2 3

4
•

•

•

•

•

•

•

• •

12|34

I
N

N

4|23|1

12|34× 4|23|1 ←→
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The S-U Diagonal ∆P

Let Aσ × Bσ denote the set of all CPs arising from σ ∈ Sn

∆P(n) :=
⋃
σ∈Sn

Aσ × Bσ

∆P(3) is the union of
A1|2|3 × B1|2|3 = {1|2|3× 123}
A1|3|2 × B1|3|2 = {1|23× 13|2}
A2|1|3 × B2|1|3 = {12|3× 2|13, 12|3× 23|1}
A2|3|1 × B2|3|1 = {2|13× 23|1}
A3|1|2 × B3|1|2 = {13|2× 3|12, 1|23× 3|12}
A3|2|1 × B3|2|1 = {123× 3|2|1}

Extend ∆P to faces of Pn multiplicatively :

∆P(A1| · · · |Ap) = ∆P(A1)| · · · |∆P(Ap)
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The S-U Diagonal ∆K

• A partition A1| · · · |Ap is degenerate if for some j and k,
there exist x , z ∈ Aj and y ∈ Aj+k such that x < y < z

• A CP a× b is non-degenerate if a and b are non-degenerate

• Let en−1 denote the top dimensional cell of Kn+1

∆K (en−1) :=
⋃
σ∈Sn

θ(Aσ)× θ(Bσ)

∆K (e2) is the union of
A1|2|3 × B1|2|3 = {1|2|3× 123}
A2|1|3 × B2|1|3 = {12|3× 2|13, 12|3× 23|1}
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The Magical Formula

• A pair of faces a × b ⊆ Kn+1 × Kn+1 is a Matching Pair
(MP) if

i. a ≤ b

ii. |a|+ |b| = n − 1

• The “Magical Formula” :

∆′K
(
en−1

)
=

⋃
MPs of faces

a×b ⊆ Kn+1×Kn+1

{a × b}
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∆′K on K4 :

1|2|3
12|3

123

2|1|3

2|13

2|3|1

23|1

1|23

3|1|2

3|12

3|2|1

MPs a × b ⊂ K4 × K4 :

a × b max a min b
1|2|3× 123 1|2|3 1|2|3
12|3× 2|13 2|1|3 2|1|3
12|3× 23|1 2|1|3 2|3|1
2|13× 23|1 2|3|1 2|3|1
1|23× 3|12 1|3|2 3|1|2
123× 3|2|1 3|2|1 3|2|1
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Equality of ∆K and ∆′K

• ∆K and ∆′K agree on K4, so this is encouraging

• θ sends every non-degenerate CP to an MP by definition

• Theorem (S-U 2022) Every MP is the image of a unique
non-degenerate CP under θ; thus ∆′K = ∆K
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associahedral k-cell a, denoted by amax (respt. amin), satisfies
max amax = max a (respt. min amin = min a)

Proposition Let a be an associahedral k-cell of Pn
i. Then amin is a non-degenerate left factor of a CP

ii. If u 6= amin is a subdivision k-cell of a, then
u is a degenerate right factor of a CP

• Factors of non-degenerate CPs are minimal subdivision cells
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Outline of Proof
• Given a vertex σ of Pn, recall the SCP aσ × bσ

Proposition Let σ be an associahedral vertex of Pn.
If c is a non-degenerate cell of Pn such that |c| = |bσ|
and σ = min bσ ≤ min c, then c is the right factor
of a CP derived from aσ × bσ.

Example Consider σ = 2|1|3, the associated SCP
aσ × bσ = 12|3× 2|13 and the non-degenerate 1-cell
c = 23|1. Then min bσ = 2|1|3 < min c = 2|3|1 and c is the
right factor of the CP 12|3× 23|1 derived from aσ × bσ.
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2|1|3

2|3|1

c = 23|1

bσ = 2|13

aσ = 12|3
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• Label F with the partition of Fmin



TGTS

Outline of Proof

• Identify each k-face F ⊆ Kn+1 with the corresponding
associahedral k-cell F ⊆ Pn; then θ (Fmin) = F

• Label F with the partition of Fmin



TGTS

Outline of Proof

• • •

• • • • • • •
• • • •

• • • • •
•

• • •

•

•

•

• •

•
•

•

• • •

124|3

12|34

24|13

2|134

4|123

123|4

234|1

23|14

34|12

3|124

134|2

13|24

14|23

1|234



TGTS

Outline of Proof

• •

• • • • • •
• •

• •

• •• • • •

• •

4|123

123|4

12|34

34|12

2|134
3|124

234|1

23|14
1|234



TGTS

Outline of Proof

Theorem If F × G ⊂ Kn+1 × Kn+1 is an MP,
then Fmin × Gmin ⊂ Pn × Pn is a CP and
θ (Fmin)× θ (Gmin) = F × G . Thus ∆′K = ∆K .
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Example Consider the MP F × G = 12|34× 4|23|1 ⊂ K5 × K5
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124|3

12|34

I
N

N

4|23|1

On P4, F = 12|34 ∪ 124|3, Fmin × Gmin = 12|34× 4|23|1 is a
CP, and θ (12|43)× θ (4|23|1) = 12|34× 4|23|1
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The End

THANK YOU!


