Comparing Diagonals on the Associahedra Joint work with Samson Saneblidze A. Razmadze Mathematical Institute

Presented by Ron Umble Professor Emeritus, Millersville University

TETRAHEDRAL GEOMETRY/TOPOLOGY SEMINAR

October 13, 2023

• Consider a regular cell complex X whose k-cells are k-dim'l polytopes

• Consider a regular cell complex X whose k-cells are k-dim'l polytopes

X is a **simplicial complex** if its k-cells are k-simplices

- Consider a regular cell complex X whose k-cells are k-dim'l polytopes
 - X is a **simplicial complex** if its k-cells are k-simplices
 - X is a **cubical complex** if its k-cells are k-cubes

- Consider a regular cell complex X whose k-cells are k-dim'l polytopes
 - X is a **simplicial complex** if its *k*-cells are *k*-simplices X is a **cubical complex** if its *k*-cells are *k*-cubes
- The geometric diagonal on X is the map $\Delta : x \mapsto (x, x)$

Consider a regular cell complex X whose k-cells are k-dim'l polytopes

X is a simplicial complex if its k-cells are k-simplices

X is a **cubical complex** if its k-cells are k-cubes

- The geometric diagonal on X is the map $\Delta : x \mapsto (x, x)$
- A diagonal approximation on X is a cellular map $\Delta_X : X \to X \times X$ homotopic to Δ

Consider a regular cell complex X whose k-cells are k-dim'l polytopes

X is a simplicial complex if its k-cells are k-simplices

X is a **cubical complex** if its k-cells are k-cubes

- The **geometric diagonal** on X is the map $\Delta : x \mapsto (x, x)$
- A diagonal approximation on X is a cellular map $\Delta_X : X \to X \times X$ homotopic to Δ
- Δ_X induces a chain map of cellular chains $\Delta_X : (C_*(X) \partial) \rightarrow (C_*(X) \otimes C_*(X), \partial \otimes \mathbf{1} + \mathbf{1} \otimes \partial)$ called a **diagonal** on $(C_*(X), \partial)$

Alexander-Whitney and Serre Diagonals

$$\Delta_{S}(01\cdots n) = \sum_{i=0}^{n} 01\cdots i \times i\cdots n;$$

 $\Delta_{S}(012) = 0 \times 012 + 01 \times 12 + 012 \times 2$

 TGTS

 < □ > < ⊡ > < ⊡ > < ≧ > < ≧ > < ≧ > < ≧ < < ○ </td>

Alexander-Whitney and Serre Diagonals

$$\begin{split} \Delta_{\text{S}}\left(012\right) &= 0 \times 012 + 01 \times 12 + 012 \times 2\\ \Delta_{\text{I}}\left(\text{I}^2\right) &= 00 \times \text{II} - 0\text{I} \times \text{I1} + \text{I0} \times 1\text{I} + \text{II} \times 11 \end{split}$$

The Associahedron K_n

 K_n is an (n-2)-dimensional contractible polytope constructed by J. Stasheff (1963) whose faces are indexed by planar rooted trees (PRTs) with *n* leaves

The Associahedron K_4

TGTS

э

The Associahedron K_4

The Associahedron K_4

TGTS

æ

ヘロト ヘロト ヘヨト ヘヨト

The Associahedron K_4

The Associahedron K_4

TGTS

э

ヘロト ヘロト ヘヨト ヘヨト

The Associahedron K_4

The Associahedron K_4

TGTS

э

ヘロト ヘ回ト ヘヨト ヘヨト

• Let X be a basepointed space

- Let X be a basepointed space
- The multiplication in ΩX induces a multiplication in $S_*(\Omega X)$ associative up to homotopy

TGTS

- Let X be a basepointed space
- The multiplication in ΩX induces a multiplication in $S_*(\Omega X)$ associative up to homotopy

TGTS

S_{*}(ΩX) is an example of an "A_∞-algebra"

- Let X be a basepointed space
- The multiplication in ΩX induces a multiplication in $S_*(\Omega X)$ associative up to homotopy

- $S_*(\Omega X)$ is an example of an " A_∞ -algebra"
- An A_{∞} -algebra consists of

- Let X be a basepointed space
- The multiplication in ΩX induces a multiplication in $S_*(\Omega X)$ associative up to homotopy

- $S_*(\Omega X)$ is an example of an " A_∞ -algebra"
- An A_{∞} -algebra consists of

(i) a dg vector space (A, d)

- Let X be a basepointed space
- The multiplication in ΩX induces a multiplication in $S_*(\Omega X)$ associative up to homotopy
- S_{*}(ΩX) is an example of an "A_∞-algebra"
- An A_{∞} -algebra consists of
 - (i) a dg vector space (A, d)
 - (ii) a family of multilinear operations $\{m_n : A^{\otimes n} \to A\}$, where $|m_n| = n 2$

- Let X be a basepointed space
- The multiplication in ΩX induces a multiplication in $S_*(\Omega X)$ associative up to homotopy
- S_{*}(ΩX) is an example of an "A_∞-algebra"
- An A_{∞} -algebra consists of
 - (i) a dg vector space (A, d)
 - (ii) a family of multilinear operations $\{m_n : A^{\otimes n} \to A\}$, where $|m_n| = n 2$
 - (iii) a family of chain maps

$$\alpha = \left\{ \alpha_{n} : (C_{*}(K_{n}), \partial) \rightarrow (Hom(A^{\otimes n}, A), \delta) \right\},\$$

where $\alpha_n\left(\underbrace{A}_n\right) = m_n$ and $\delta(f) = d \circ f - (-1)^{|f|} f \circ d^{\otimes}$

TGTS イロト 4 周 ト 4 声 ト イ 声 ト ー 声 - うへの

• The chain map α identifies each cell of K with a composition of A_{∞} -operations

TGTS

- The chain map α identifies each cell of K with a composition of A_{∞} -operations
- For example, α identifies the 1-cell [0, 1] of K₃ with the operation m₃ and its vertices 0 and 1 with the compositions m₂(m₂ ⊗ 1) and m₂(1 ⊗ m₂) in the following way:

- The chain map α identifies each cell of K with a composition of A_{∞} -operations
- For example, α identifies the 1-cell [0, 1] of K₃ with the operation m₃ and its vertices 0 and 1 with the compositions m₂(m₂ ⊗ 1) and m₂(1 ⊗ m₂) in the following way:

In $C_*(K_3)$, the 1-cell of K_3 is represented by tree \downarrow and its vertices by the trees

$$\downarrow$$
 := \land (\land \otimes **1**) and \downarrow := \land (**1** \otimes \land)

- The chain map α identifies each cell of K with a composition of A_{∞} -operations
- For example, α identifies the 1-cell [0, 1] of K₃ with the operation m₃ and its vertices 0 and 1 with the compositions m₂(m₂ ⊗ 1) and m₂(1 ⊗ m₂) in the following way:

In $C_*(K_3)$, the 1-cell of K_3 is represented by tree \bigwedge and its vertices by the trees

$$\swarrow:= \curlyvee(\curlyvee \otimes \mathbf{1})$$
 and $\oiint:= \curlyvee(\mathbf{1} \otimes \curlyvee)$

Then $\alpha(\swarrow) = m_3$,

$$\alpha(\swarrow) = m_2(m_2 \otimes \mathbf{1})$$
 and $\alpha(\swarrow) = m_2(\mathbf{1} \otimes m_2)$

Structure Relations

• The combinatorics of $K = \{K_n\}$ encode the structure relations in an A_{∞} -algebra

TGTS

|G|S うりの きょう オート 4 回 ト 4 回 ト 4 回 ト

Structure Relations

- The combinatorics of $K = \{K_n\}$ encode the structure relations in an A_{∞} -algebra
- For example,

$$d \circ m_3 - m_3 \circ d^{\otimes} = \delta(m_3)$$

= $(\delta \circ \alpha)(\swarrow) = (\alpha \circ \partial)(\bigstar)$
= $\alpha(\bigstar - \bigstar) = (m_2(\mathbf{1} \otimes m_2) - m_2(m_2 \otimes \mathbf{1}))$

TGTS

|G|S うりの きょう オート 4 回 ト 4 回 ト 4 回 ト

Structure Relations

- The combinatorics of K = {K_n} encode the structure relations in an A_∞-algebra
- For example,

$$d \circ m_3 - m_3 \circ d^{\otimes} = \delta(m_3)$$

= $(\delta \circ \alpha)(\swarrow) = (\alpha \circ \partial)(\bigstar)$
= $\alpha(\bigstar - \bigstar) = (m_2(\mathbf{1} \otimes m_2) - m_2(m_2 \otimes \mathbf{1}))$

• m_3 is a chain homotopy from $m_2(m_2\otimes 1)$ to $m_2(1\otimes m_2)$ called the **associator**

Tensor Product of A_{∞} -Algebras

• Given A_{∞} -algebras (A, α) and (B, β) and a diagonal $\Delta_{K}: C_{*}(K) \rightarrow C_{*}(K) \otimes C_{*}(K)$, the composition $C_*(K_n) \xrightarrow{\gamma} Hom((A \otimes B)^{\otimes n}, A \otimes B)$ $\Delta_{\kappa}\downarrow$ $\uparrow \approx$ $C_*(K_n) \otimes C_*(K_n) \xrightarrow[\alpha \otimes \beta]{} Hom(A^{\otimes n}, A) \otimes Hom(B^{\otimes n}, B)$ defines the A_{∞} -algebra $(A \otimes B, \gamma)$

Tensor Product of A_{∞} -Algebras

- Given A_{∞} -algebras (A, α) and (B, β) and a diagonal $\Delta_{K}: C_{*}(K) \rightarrow C_{*}(K) \otimes C_{*}(K)$, the composition $C_*(K_n) \xrightarrow{\gamma} Hom((A \otimes B)^{\otimes n}, A \otimes B)$ $\Delta_{\kappa}\downarrow$ $\uparrow \approx$ $C_*(K_n) \otimes C_*(K_n) \xrightarrow[\alpha \otimes \beta]{} Hom(A^{\otimes n}, A) \otimes Hom(B^{\otimes n}, B)$ defines the A_{∞} -algebra $(A \otimes B, \gamma)$
- $\Delta_{\mathcal{K}}$ is the essential ingredient in the tensor product

 S-U (2004) were the first to construct a cellular combinatorial/differential graded formula for Δ_K

TGTS

- CTDT シック・ 声 - イヨト イヨト イロト

- S-U (2004) were the first to construct a cellular combinatorial/differential graded formula for Δ_K
- Markl and Shnider (2006) were the first to prove the "magical formula" for Δ'_K proposed by J-L Loday, whose components are "matching pairs" of faces of matching dimensions comparable with respect to Tamari order

- S-U (2004) were the first to construct a cellular combinatorial/differential graded formula for Δ_K
- Markl and Shnider (2006) were the first to prove the "magical formula" for Δ'_K proposed by J-L Loday, whose components are "matching pairs" of faces of matching dimensions comparable with respect to Tamari order
- Masuda, Thomas, Tonks, and Vallette (2021) were the first to construct a point-set topological diagonal map, which descends to the magical formula at the cellular level

- S-U (2004) were the first to construct a cellular combinatorial/differential graded formula for Δ_K
- Markl and Shnider (2006) were the first to prove the "magical formula" for Δ'_K proposed by J-L Loday, whose components are "matching pairs" of faces of matching dimensions comparable with respect to Tamari order
- Masuda, Thomas, Tonks, and Vallette (2021) were the first to construct a point-set topological diagonal map, which descends to the magical formula at the cellular level
- Our proof that Δ_K = Δ'_K views the permutahedron P_n as a subdivision of K_{n+1} and appeals to the combinatorics of P_n

The Permutahedron P_n

 P_n is an (n-1)-dimensional polytope constructed by P. Schoute (1911) whose faces are indexed either by planar rooted *leveled* trees (PLTs) with n + 1 leaves or ordered partitions of $\underline{n} := \{1, 2, ..., n\}$

The Permutahedron P_3

(日)

Partitions and PLTs

TGTS < □ > < @ > < ই > < ই > ই ৩৫...

Inductive Construction of P_n

 P_3 as a subdivision of $P_2 \times I$

TGTS

э

<ロト <回ト < 注ト < 注ト
Inductive Construction of P_n

TGTS

Tonks' Projection

• Tonks' projection $\theta: P_n \to K_{n+1}$ is given by forgetting levels

Tonks' Projection

• Tonks' projection $\theta: P_n \to K_{n+1}$ is given by forgetting levels

• On P_3 we have

$$\theta\left(\begin{array}{c} \downarrow\\ \checkmark\\ \end{array}\right)=\theta\left(\begin{array}{c} \downarrow\\ \checkmark\\ \end{array}\right)=\theta\left(\begin{array}{c} \downarrow\\ \checkmark\\ \end{array}\right)=\begin{array}{c} \downarrow\\ \checkmark\\ \end{array}$$

Tonks' Projection

• Tonks' projection $\theta: P_n \to K_{n+1}$ is given by forgetting levels

• On P_3 we have

$$\theta\left(\begin{array}{c} \downarrow\\ \checkmark\\ \end{array}\right) = \theta\left(\begin{array}{c} \downarrow\\ \checkmark\\ \end{array}\right) = \theta\left(\begin{array}{c} \downarrow\\ \checkmark\\ \end{array}\right) = \begin{array}{c} \downarrow\\ \checkmark\\ \end{array}$$

• A diagonal Δ_P on P_n induces a diagonal Δ_K on K_{n+1} :

$$\Delta_{\mathcal{K}}\left(\underbrace{\swarrow}_{_{n+1}}\right) := \theta \times \theta\left(\Delta_{\mathcal{P}}\left(\underbrace{\swarrow}_{_{n+1}}\right)\right)$$

- CIDI シック・ 手 - イヨト イヨト イロト

 Tonks' projection applied to P_n as a subdivision of Iⁿ⁻¹ allows us to view K_{n+1} as a subdivision of Iⁿ⁻¹ as well...

 Tonks' projection applied to P_n as a subdivision of Iⁿ⁻¹ allows us to view K_{n+1} as a subdivision of Iⁿ⁻¹ as well...

• And to view P_n as a subdivision of K_{n+1}

- Tonks' projection applied to P_n as a subdivision of Iⁿ⁻¹ allows us to view K_{n+1} as a subdivision of Iⁿ⁻¹ as well...
- And to view P_n as a subdivision of K_{n+1}

< 口 > < 固 > < 直 > < 直 >

- Tonks' projection applied to P_n as a subdivision of Iⁿ⁻¹ allows us to view K_{n+1} as a subdivision of Iⁿ⁻¹ as well...
- And to view P_n as a subdivision of K_{n+1}

(日) (四) (王) (王) (王)

• An associahedral k-cell of P_n is a k-face of K_{n+1}

TGTS

- An associahedral k-cell of P_n is a k-face of K_{n+1}
- A subdivision *k*-cell of *P_n* is a *k*-cell of some associahedral *k*-cell

TGTS

- CTDT シック・ 声 - イヨト イヨト イロト

- An associahedral k-cell of P_n is a k-face of K_{n+1}
- A subdivision *k*-cell of *P_n* is a *k*-cell of some associahedral *k*-cell

• A non-degenerate vertex is an associahedral vertex

- An associahedral k-cell of P_n is a k-face of K_{n+1}
- A subdivision k-cell of P_n is a k-cell of some associahedral k-cell
- A non-degenerate vertex is an associahedral vertex
- A positive dimensional cell e ⊆ P_n is non-degenerate if |θ(e)| = |e|

- An associahedral k-cell of P_n is a k-face of K_{n+1}
- A subdivision k-cell of P_n is a k-cell of some associahedral k-cell
- A non-degenerate vertex is an associahedral vertex
- A positive dimensional cell e ⊆ P_n is non-degenerate if |θ(e)| = |e|

(日)

• The vertices of P_n are identified with the permutations in S_n

TGTS

CIDI うどの 声 (声)(声)(中)

- The vertices of P_n are identified with the permutations in S_n
- The weak order on S_n given by

$$\cdots |x_i|x_{i+1}| \cdots < \cdots |x_{i+1}|x_i| \cdots \text{ if } x_i < x_{i+1}$$

induces a p.o. on vertices and orients the 1-skeleton of P_n

- The vertices of P_n are identified with the permutations in S_n
- The weak order on S_n given by

 $\cdots |x_i|x_{i+1}| \cdots < \cdots |x_{i+1}|x_i| \cdots \text{ if } x_i < x_{i+1}$

induces a p.o. on vertices and orients the 1-skeleton of P_n

• Let *min e* and *max e* denote the *minimal* and *maximal* vertices of a face *e*

- The vertices of P_n are identified with the permutations in S_n
- The weak order on S_n given by

 $\cdots |x_i|x_{i+1}| \cdots < \cdots |x_{i+1}|x_i| \cdots \text{ if } x_i < x_{i+1}$

induces a p.o. on vertices and orients the 1-skeleton of P_n

- Let *min e* and *max e* denote the *minimal* and *maximal* vertices of a face *e*
- For example, $\min \underline{n} = 1|2|\cdots |n$ and $\max \underline{n} = n|\cdots |2|1$

- The vertices of P_n are identified with the permutations in S_n
- The weak order on S_n given by

 $\cdots |x_i|x_{i+1}| \cdots < \cdots |x_{i+1}|x_i| \cdots \text{ if } x_i < x_{i+1}$

induces a p.o. on vertices and orients the 1-skeleton of P_n

- Let *min e* and *max e* denote the *minimal* and *maximal* vertices of a face *e*
- For example, $\min \underline{n} = 1|2|\cdots|n$ and $\max \underline{n} = n|\cdots|2|1$
- Define $e \leq e'$ if \exists an oriented edge-path from max e to min e'

- The vertices of P_n are identified with the permutations in S_n
- The weak order on S_n given by

 $\cdots |x_i|x_{i+1}| \cdots < \cdots |x_{i+1}|x_i| \cdots \text{ if } x_i < x_{i+1}$

induces a p.o. on vertices and orients the 1-skeleton of P_n

- Let *min e* and *max e* denote the *minimal* and *maximal* vertices of a face *e*
- For example, $\min \underline{n} = 1|2|\cdots|n$ and $\max \underline{n} = n|\cdots|2|1$
- Define $e \leq e'$ if \exists an oriented edge-path from max e to min e'
- θ induces a weak order on the faces $\{\theta(e_i)\} \subset K_{n+1}$:

 $\theta(e_i) \leq \theta(e_j)$ if $e_i \leq e_j$

- The vertices of P_n are identified with the permutations in S_n
- The weak order on S_n given by

 $\cdots |x_i|x_{i+1}| \cdots < \cdots |x_{i+1}|x_i| \cdots \text{ if } x_i < x_{i+1}$

induces a p.o. on vertices and orients the 1-skeleton of P_n

- Let *min e* and *max e* denote the *minimal* and *maximal* vertices of a face *e*
- For example, $\min \underline{n} = 1|2|\cdots|n$ and $\max \underline{n} = n|\cdots|2|1$
- Define $e \leq e'$ if \exists an oriented edge-path from max e to min e'
- θ induces a weak order on the faces $\{\theta(e_i)\} \subset K_{n+1}$:

$$\theta(e_i) \leq \theta(e_j)$$
 if $e_i \leq e_j$

GTS

• Tamari order is the restriction of weak order to vertices

• Consider a vertex $\sigma = x_1 | \cdots | x_n$

• Consider a vertex $\sigma = x_1 | \cdots | x_n$

• Reading from left-to-right and from right-to-left, construct the partitions $\overleftarrow{\sigma}_1 | \cdots | \overleftarrow{\sigma}_p$ and $\overrightarrow{\sigma}_q | \cdots | \overrightarrow{\sigma}_1$ of maximal decreasing subsets

• Consider a vertex $\sigma = x_1 | \cdots | x_n$

- Reading from left-to-right and from right-to-left, construct the partitions $\overleftarrow{\sigma}_1 | \cdots | \overleftarrow{\sigma}_p$ and $\overrightarrow{\sigma}_q | \cdots | \overrightarrow{\sigma}_1$ of maximal decreasing subsets
- Form the Strong Complementary Pair (SCP)

$$a_{\sigma} \times b_{\sigma} := \overleftarrow{\sigma}_1 | \cdots | \overleftarrow{\sigma}_p \times \overrightarrow{\sigma}_q | \cdots | \overrightarrow{\sigma}_1$$

うびつ 川 (1015) シンCo 川 (1015) (日) (1015)

• Consider a vertex $\sigma = x_1 | \cdots | x_n$

- Reading from left-to-right and from right-to-left, construct the partitions $\overleftarrow{\sigma}_1 | \cdots | \overleftarrow{\sigma}_p$ and $\overrightarrow{\sigma}_q | \cdots | \overrightarrow{\sigma}_1$ of maximal decreasing subsets
- Form the Strong Complementary Pair (SCP)

$$a_{\sigma} \times b_{\sigma} := \overleftarrow{\sigma}_1 | \cdots | \overleftarrow{\sigma}_p \times \overrightarrow{\sigma}_q | \cdots | \overrightarrow{\sigma}_1$$

• For example, the SCP associated with $\sigma = 4|2|1|3$ is

$$a_{\sigma} \times b_{\sigma} = \overleftarrow{\sigma}_{1} |\overleftarrow{\sigma}_{2} \times \overrightarrow{\sigma}_{3}| \overrightarrow{\sigma}_{2} |\overrightarrow{\sigma}_{1} = 421 |3 \times 4|2|13$$

The SCP associated with 4|2|1|3 is $421|3\times4|2|13$

The SCP associated with 4|2|1|3 is $421|3 \times 4|2|13$

In general, for an SCP $a_{\sigma} \times b_{\sigma} := \overleftarrow{\sigma}_1 | \cdots | \overleftarrow{\sigma}_p \times \overrightarrow{\sigma}_q | \cdots | \overrightarrow{\sigma}_1$

The SCP associated with 4|2|1|3 is $421|3 \times 4|2|13$

In general, for an SCP $a_{\sigma} \times b_{\sigma} := \overleftarrow{\sigma}_1 | \cdots | \overleftarrow{\sigma}_p \times \overrightarrow{\sigma}_q | \cdots | \overrightarrow{\sigma}_1$

•
$$p + q = n + 1$$

The SCP associated with 4|2|1|3 is $421|3\times4|2|13$

In general, for an SCP $a_{\sigma} \times b_{\sigma} := \overleftarrow{\sigma}_1 | \cdots | \overleftarrow{\sigma}_p \times \overrightarrow{\sigma}_q | \cdots | \overrightarrow{\sigma}_1$

•
$$p + q = n + 1$$

•
$$\sigma = \max a_{\sigma} = \min b_{\sigma}$$

The SCP associated with 4|2|1|3 is 421|3 \times 4|2|13

In general, for an SCP $a_{\sigma} \times b_{\sigma} := \overleftarrow{\sigma}_1 | \cdots | \overleftarrow{\sigma}_p \times \overrightarrow{\sigma}_q | \cdots | \overrightarrow{\sigma}_1$

•
$$p+q=n+1$$

•
$$\sigma = \max a_{\sigma} = \min b_{\sigma}$$

• min $\overleftarrow{\sigma}_i < \max \overleftarrow{\sigma}_{i+1}$ for all i < p (*i* increases left-to-right)

The SCP associated with 4|2|1|3 is $421|3 \times 4|2|13$

In general, for an SCP $a_{\sigma} \times b_{\sigma} := \overleftarrow{\sigma}_1 | \cdots | \overleftarrow{\sigma}_p \times \overrightarrow{\sigma}_q | \cdots | \overrightarrow{\sigma}_1$

•
$$p + q = n + 1$$

•
$$\sigma = \max a_{\sigma} = \min b_{\sigma}$$

- min $\overleftarrow{\sigma}_i < \max \overleftarrow{\sigma}_{i+1}$ for all i < p (*i* increases left-to-right)
- min $\overrightarrow{\sigma}_j < \max \overrightarrow{\sigma}_{j+1}$ for all j < q (*j* increases right-to-left)

• □ > → □ >

Step Matrix Representation

Given an SCP $A_1 | \cdots | A_p \times B_q | \cdots | B_1$, construct the corresponding $q \times p$ step matrix representation :

Step matrix representation of $38|24|5|17|6 \times 8|34|257|16$

			1	6
	2	5	7	
3	4			
8				

Step Matrix Representation

Given an SCP $A_1 | \cdots | A_p \times B_q | \cdots | B_1$, construct the corresponding $q \times p$ step matrix representation :

1. List the elements of A_1 contiguously, increasing and flush down in column 1

Step matrix representation of $38|24|5|17|6 \times 8|34|257|16$

			1	6
	2	5	7	
3	4			
8				

うびつ 川 (1015) シンCo 川 (1015) (日) (1015)

Step Matrix Representation

Given an SCP $A_1 | \cdots | A_p \times B_q | \cdots | B_1$, construct the corresponding $q \times p$ step matrix representation :

- 1. List the elements of A_1 contiguously, increasing and flush down in column 1
- List the elements of A_i contiguously and increasing in column i with max A_i in the row of min A_{i-1}

Step matrix representation of $38|24|5|17|6\times8|34|257|16$

			1	6
	2	5	7	
3	4			
8				

うびつ 川 (1015) シンCo 川 (1015) (日) (1015)

Derived Matrices

Given the step matrix representation of an SCP $A_1 | \cdots | A_p \times B_q | \cdots | B_1$, iteratively contruct a $q \times p$ derived matrix :

Derived matrix with $M_1 = M_2 = \{8\}, N_2 = \{5,7\}$

TGTS イロト イ団ト イヨト イヨト ヨー のへの

Derived Matrices

Given the step matrix representation of an SCP $A_1 | \cdots | A_p \times B_q | \cdots | B_1$, iteratively contruct a $q \times p$ derived matrix :

1. For each *i*, choose a subset $M_i \subseteq A_i \setminus min A_i$

Derived matrix with $M_1 = M_2 = \{8\}, N_2 = \{5,7\}$

TGTS

うびつ 川 ふかく 山々 ふしゃ

Derived Matrices

Given the step matrix representation of an SCP $A_1 | \cdots | A_p \times B_q | \cdots | B_1$, iteratively contruct a $q \times p$ derived matrix :

1. For each *i*, choose a subset $M_i \subseteq A_i \smallsetminus min A_i$

If min $M_i > max A_{i+1}$ shift M_i right one column

Derived matrix with $M_1 = M_2 = \{8\}, N_2 = \{5, 7\}$
Derived Matrices

Given the step matrix representation of an SCP $A_1 | \cdots | A_p \times B_q | \cdots | B_1$, iteratively contruct a $q \times p$ derived matrix :

1. For each *i*, choose a subset $M_i \subseteq A_i \smallsetminus \min A_i$ If $\min M_i > \max A_{i+1}$ shift M_i right one column

2. For each *j*, choose a subset $N_j \subseteq B_j \setminus min B_j$

Derived matrix with $M_1 = M_2 = \{8\}, N_2 = \{5,7\}$

· ·

Derived Matrices

Given the step matrix representation of an SCP $A_1 | \cdots | A_p \times B_q | \cdots | B_1$, iteratively contruct a $q \times p$ derived matrix :

- 1. For each *i*, choose a subset $M_i \subseteq A_i \smallsetminus \min A_i$ If $\min M_i > \max A_{i+1}$ shift M_i right one column
- 2. For each *j*, choose a subset $N_j \subseteq B_j \setminus \min B_j$ If $\min N_i > \max B_{j+1}$ shift N_i down one row

Derived matrix with $M_1 = M_2 = \{8\}, N_2 = \{5,7\}$

-

Complementary Pairs

Given a $q \times p$ derived matrix with columns $A'_1 \cdots A'_p$ and rows $B'_1 \cdots B'_q$, the corresponding **complementary pair** (CP) is

$$A'_1|\cdots|A'_p\times B'_q|\cdots|B'_1$$

$$\Rightarrow 3|24|58|17|6 \times 8|3457|2|16$$

Effect of Shift Actions on $P_n \times P_n$

Right-Shifts Decrease Order of Left Factors

Down-Shifts Increase Order of Right Factors

TGTS < □ > < ⊡ > < Ξ > < Ξ > < Ξ > < ⊃ < ⊙

Let $A_{\sigma} imes B_{\sigma}$ denote the set of all CPs arising from $\sigma \in S_n$

TGTS < □ ▷ < @ ▷ < ছ > < ছ > ছ ৩৫৫

Let $A_{\sigma} \times B_{\sigma}$ denote the set of all CPs arising from $\sigma \in S_n$

$$\Delta_P(\underline{n}) := \bigcup_{\sigma \in S_n} A_{\sigma} \times B_{\sigma}$$

Let $A_{\sigma} \times B_{\sigma}$ denote the set of all CPs arising from $\sigma \in S_n$

$$\Delta_P(\underline{n}) := \bigcup_{\sigma \in S_n} A_\sigma imes B_\sigma$$

 $\Delta_P(\underline{3})$ is the union of

$$\begin{array}{l} A_{1|2|3} \times B_{1|2|3} = \{1|2|3 \times 123\} \\ A_{1|3|2} \times B_{1|3|2} = \{1|23 \times 13|2\} \\ A_{2|1|3} \times B_{2|1|3} = \{12|3 \times 2|13, \ 12|3 \times 23|1\} \\ A_{2|3|1} \times B_{2|3|1} = \{2|13 \times 23|1\} \\ A_{3|1|2} \times B_{3|1|2} = \{13|2 \times 3|12, \ 1|23 \times 3|12\} \\ A_{3|2|1} \times B_{3|2|1} = \{123 \times 3|2|1\} \end{array}$$

TGTS

Let $A_{\sigma} \times B_{\sigma}$ denote the set of all CPs arising from $\sigma \in S_n$

$$\Delta_P(\underline{n}) := \bigcup_{\sigma \in S_n} A_\sigma imes B_\sigma$$

 $\Delta_P(\underline{3})$ is the union of

$$\begin{array}{l} A_{1|2|3} \times B_{1|2|3} = \{1|2|3 \times 123\} \\ A_{1|3|2} \times B_{1|3|2} = \{1|23 \times 13|2\} \\ A_{2|1|3} \times B_{2|1|3} = \{12|3 \times 2|13, \ 12|3 \times 23|1\} \\ A_{2|3|1} \times B_{2|3|1} = \{2|13 \times 23|1\} \\ A_{3|1|2} \times B_{3|1|2} = \{13|2 \times 3|12, \ 1|23 \times 3|12\} \\ A_{3|2|1} \times B_{3|2|1} = \{123 \times 3|2|1\} \end{array}$$

Extend Δ_P to faces of P_n multiplicatively :

$$\Delta_P(A_1|\cdots|A_p) = \Delta_P(A_1)|\cdots|\Delta_P(A_p)$$

- CIDI シック・ 手 - イヨト イヨト イロト

A partition A₁|···|A_p is degenerate if for some j and k, there exist x, z ∈ A_j and y ∈ A_{j+k} such that x < y < z

A partition A₁|···|A_p is degenerate if for some j and k, there exist x, z ∈ A_j and y ∈ A_{j+k} such that x < y < z

• A CP $a \times b$ is **non-degenerate** if a and b are non-degenerate

- A partition A₁|···|A_p is degenerate if for some j and k, there exist x, z ∈ A_j and y ∈ A_{j+k} such that x < y < z
- A CP $a \times b$ is **non-degenerate** if a and b are non-degenerate
- Let e^{n-1} denote the top dimensional cell of K_{n+1}

$$\Delta_{\mathcal{K}}(e^{n-1}) := \bigcup_{\sigma \in S_n} \theta(A_{\sigma}) \times \theta(B_{\sigma})$$

- A partition A₁|···|A_p is degenerate if for some j and k, there exist x, z ∈ A_j and y ∈ A_{j+k} such that x < y < z
- A CP *a* × *b* is **non-degenerate** if *a* and *b* are non-degenerate
- Let e^{n-1} denote the top dimensional cell of K_{n+1}

$$\Delta_{\mathcal{K}}(e^{n-1}) := \bigcup_{\sigma \in S_n} \theta(A_{\sigma}) \times \theta(B_{\sigma})$$

 $\Delta_{\mathcal{K}}(e^2)$ is the union of

$$\begin{array}{l} A_{1|2|3} \times B_{1|2|3} = \{1|2|3 \times 123\} \\ A_{2|1|3} \times B_{2|1|3} = \{12|3 \times 2|13, \ 12|3 \times 23|1\} \\ A_{2|3|1} \times B_{2|3|1} = \{2|13 \times 23|1\} \\ A_{3|1|2} \times B_{3|1|2} = \{1|23 \times 3|12\} \\ A_{3|2|1} \times B_{3|2|1} = \{123 \times 3|2|1\} \end{array}$$

 A pair of faces a × b ⊆ K_{n+1} × K_{n+1} is a Matching Pair (MP) if

TGTS

 A pair of faces a × b ⊆ K_{n+1} × K_{n+1} is a Matching Pair (MP) if

i. a ≤ b

 A pair of faces a × b ⊆ K_{n+1} × K_{n+1} is a Matching Pair (MP) if

TGTS

- ロ > 4日 > 4 三 > 4 三 > 4 三 > 4 日 > 4 H >

- i. $a \leq b$
- ii. |a| + |b| = n 1

- A pair of faces a × b ⊆ K_{n+1} × K_{n+1} is a Matching Pair (MP) if
 - i. $a \leq b$
 - ii. |a| + |b| = n 1
- The "Magical Formula" :

$$\Delta_{\mathcal{K}}^{\prime}\left(e^{n-1}
ight)=igcup_{\mathsf{MPs of faces}}\left\{a imes b
ight\}$$

 $a \times b \subseteq K_{n+1} \times K_{n+1}$

TGTS

- ロ > 4日 > 4 三 > 4 三 > 4 三 > 4 日 > 4 H >

 $\mathsf{MPs} \ a \times b \subset K_4 \times K_4 :$

a imes b	max a	min b
1 2 3 imes 123	1 2 3	1 2 3
12 3 imes 2 13	2 1 3	2 1 3
12 3 imes 23 1	2 1 3	2 3 1
2 13 imes 23 1	2 3 1	2 3 1
1 23 imes 3 12	1 3 2	3 1 2
123 imes 3 2 1	3 2 1	3 2 1

TGTS

< □ > < @ > < E > < E >

Equality of Δ_K and Δ'_K

• Δ_K and Δ'_K agree on K_4 , so this is encouraging

Equality of $\Delta_{\mathcal{K}}$ and $\Delta'_{\mathcal{K}}$

- Δ_K and Δ'_K agree on K_4 , so this is encouraging
- θ sends every non-degenerate CP to an MP by definition

Equality of Δ_K and Δ'_K

- Δ_K and Δ'_K agree on K_4 , so this is encouraging
- θ sends every non-degenerate CP to an MP by definition
- Theorem (S-U 2022) Every MP is the image of a unique non-degenerate CP under θ; thus Δ'_K = Δ_K

• View P_n as a subdivision of K_{n+1}

- View P_n as a subdivision of K_{n+1}
- The maximal (respt. minimal) subdivision k-cell of an associahedral k-cell a, denoted by a_{max} (respt. a_{min}), satisfies max a_{max} = max a (respt. min a_{min} = min a)

うびつ 川 (1015) ものの 川 (115) (日) (日)

• View P_n as a subdivision of K_{n+1}

The maximal (respt. minimal) subdivision k-cell of an associahedral k-cell a, denoted by a_{max} (respt. a_{min}), satisfies max a_{max} = max a (respt. min a_{min} = min a)

Proposition Let a be an associahedral k-cell of P_n

• View P_n as a subdivision of K_{n+1}

The maximal (respt. minimal) subdivision k-cell of an associahedral k-cell a, denoted by a_{max} (respt. a_{min}), satisfies max a_{max} = max a (respt. min a_{min} = min a)

Proposition Let a be an associahedral k-cell of P_n

i. Then a_{min} is a non-degenerate left factor of a CP

• View P_n as a subdivision of K_{n+1}

The maximal (respt. minimal) subdivision k-cell of an associahedral k-cell a, denoted by a_{max} (respt. a_{min}), satisfies max a_{max} = max a (respt. min a_{min} = min a)

Proposition Let a be an associahedral k-cell of P_n

- i. Then a_{\min} is a non-degenerate left factor of a CP
- ii. If $u \neq a_{min}$ is a subdivision k-cell of a, then u is a degenerate right factor of a CP

• View P_n as a subdivision of K_{n+1}

The maximal (respt. minimal) subdivision k-cell of an associahedral k-cell a, denoted by a_{max} (respt. a_{min}), satisfies max a_{max} = max a (respt. min a_{min} = min a)

Proposition Let a be an associahedral k-cell of P_n

- i. Then a_{\min} is a non-degenerate left factor of a CP
- ii. If $u \neq a_{min}$ is a subdivision k-cell of a, then u is a degenerate right factor of a CP
- Factors of non-degenerate CPs are minimal subdivision cells

• Given a vertex σ of P_n , recall the SCP $a_\sigma \times b_\sigma$

• Given a vertex σ of P_n , recall the SCP $a_\sigma \times b_\sigma$

Proposition Let σ be an associahedral vertex of P_n . If c is a non-degenerate cell of P_n such that $|c| = |b_{\sigma}|$ and $\sigma = \min b_{\sigma} \le \min c$, then c is the right factor of a CP derived from $a_{\sigma} \times b_{\sigma}$.

• Given a vertex σ of P_n , recall the SCP $a_\sigma \times b_\sigma$

Proposition Let σ be an associahedral vertex of P_n . If c is a non-degenerate cell of P_n such that $|c| = |b_{\sigma}|$ and $\sigma = \min b_{\sigma} \leq \min c$, then c is the right factor of a CP derived from $a_{\sigma} \times b_{\sigma}$.

Example Consider $\sigma = 2|1|3$, the associated SCP $a_{\sigma} \times b_{\sigma} = 12|3 \times 2|13$ and the non-degenerate 1-cell c = 23|1. Then min $b_{\sigma} = 2|1|3 < \min c = 2|3|1$ and c is the right factor of the CP $12|3 \times 23|1$ derived from $a_{\sigma} \times b_{\sigma}$.

Identify each k-face F ⊆ K_{n+1} with the corresponding associahedral k-cell F ⊆ P_n; then θ (F_{min}) = F

TGTS

Identify each k-face F ⊆ K_{n+1} with the corresponding associahedral k-cell F ⊆ P_n; then θ (F_{min}) = F

TGTS

- ロ > 4日 > 4 三 > 4 三 > 4 三 > 4 日 > 4 H >

• Label F with the partition of \mathcal{F}_{min}

・ロト・西ト・山田・山田・山口・

(ロ)、(型)、(E)、(E)、 E) の(()

TGTS

Theorem If $F \times G \subset K_{n+1} \times K_{n+1}$ is an MP, then $\mathcal{F}_{\min} \times \mathcal{G}_{\min} \subset P_n \times P_n$ is a CP and $\theta(\mathcal{F}_{\min}) \times \theta(\mathcal{G}_{\min}) = F \times G$. Thus $\Delta'_K = \Delta_K$.

Outline of Proof

Theorem If $F \times G \subset K_{n+1} \times K_{n+1}$ is an MP, then $\mathcal{F}_{\min} \times \mathcal{G}_{\min} \subset P_n \times P_n$ is a CP and $\theta(\mathcal{F}_{\min}) \times \theta(\mathcal{G}_{\min}) = F \times G$. Thus $\Delta'_K = \Delta_K$.

Example Consider the MP $F \times G = 12|34 \times 4|23|1 \subset K_5 \times K_5$

(日) (圖) (圖) (圖)

Outline of Proof

Theorem If $F \times G \subset K_{n+1} \times K_{n+1}$ is an MP, then $\mathcal{F}_{\min} \times \mathcal{G}_{\min} \subset P_n \times P_n$ is a CP and $\theta(\mathcal{F}_{\min}) \times \theta(\mathcal{G}_{\min}) = F \times G$. Thus $\Delta'_K = \Delta_K$.

Example Consider the MP $F \times G = 12|34 \times 4|23|1 \subset K_5 \times K_5$

On P_4 , $\mathcal{F} = 12|34 \cup 124|3$, $\mathcal{F}_{min} \times \mathcal{G}_{min} = 12|34 \times 4|23|1$ is a CP, and $\theta (12|43) \times \theta (4|23|1) = 12|34 \times 4|23|1$

A D > A D > A D > A D > A

э

In Summary...

If F is a k-face of K_{n+1}, F_{min} is the unque non-degenerate subdivision k-cell of the associahedral k-cell F ⊂ P_n

In Summary...

- If F is a k-face of K_{n+1}, F_{min} is the unque non-degenerate subdivision k-cell of the associahedral k-cell F ⊂ P_n
- If $F \times G \subset K_{n+1} \times K_{n+1}$ is an MP, then $\mathcal{F}_{\min} \times \mathcal{G}_{\min}$ is a CP

・・

In Summary...

- If F is a k-face of K_{n+1}, F_{min} is the unquee non-degenerate subdivision k-cell of the associahedral k-cell F ⊂ P_n
- If $F \times G \subset K_{n+1} \times K_{n+1}$ is an MP, then $\mathcal{F}_{min} \times \mathcal{G}_{min}$ is a CP

・・

•
$$\theta(\mathcal{F}_{\min}) \times \theta(\mathcal{G}_{\min}) = F \times G$$

THANK YOU!

