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Diagonal Approximations

e Consider a regular cell complex X whose k-cells are k-dim’l
polytopes

X is a simplicial complex if its k-cells are k-simplices
X is a cubical complex if its k-cells are k-cubes
e The geometric diagonal on X is the map A : x — (x, x)

e A diagonal approximation on X is a cellular map
Ax : X = X x X homotopic to A
e Ax induces a chain map of cellular chains
Ax: (G (X)) = (CG.(X)® C(X),021+1®09)
called a diagonal on (C, (X),0)
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Alexander-Whitney and Serre Diagonals
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Alexander-Whitney and Serre Diagonals
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The Associahedron K,

K, is an (n — 2)-dimensional contractible polytope constructed by
J. Stasheff (1963) whose faces are indexed by planar rooted trees
(PRTs) with n leaves
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A-Algebras

e Let X be a basepointed space

e The multiplication in X induces a multiplication in S,(2X)
associative up to homotopy

e S5.(QX) is an example of an “A.-algebra”
e An A..-algebra consists of
(i) a dg vector space (A, d)

(i) a family of multilinear operations {m, : A®" — A},
where |mp| =n—2

(iii) a family of chain maps

o= {an: (C(Kn),0) = (Hom (A®", A),6)},

where o, <A\> —mpand §(f) =dof—(-1)lfod®

—_—
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e For example, « identifies the 1-cell [0, 1] of K3 with the
operation m3 and its vertices 0 and 1 with the compostions
ma(mz2 ® 1) and ma(1 ® my) in the following way:
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The Chain Map «

e The chain map « identifies each cell of K with a composition
of A.-operations

e For example, « identifies the 1-cell [0, 1] of K3 with the
operation m3 and its vertices 0 and 1 with the compostions
ma(mz2 ® 1) and ma(1 ® my) in the following way:

In C.(K3), the 1-cell of K3 is represented by tree A_and its
vertices by the trees

A= A(A®1L) and A = A (1@ A)
Then a( A) = ms,
a( N) = m(m ®1) and o A) = ma(1 ® mo)
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Structure Relations

e The combinatorics of K = {K,} encode the structure
relations in an A..-algebra

e For example,

doms—m3od®=4§(m3)

= (0oa)(A)=(a0d)(A)
= a (A= A) = (ma(1® ma) — my(m ©1)

e mj3 is a chain homotopy from my(my ® 1) to ma(1 @ my)
called the associator
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Tensor Product of A,.-Algebras

o Given Ay-algebras (A, «) and (B, 3) and a diagonal
Ak : G (K) = G (K)® Ci (K), the composition

C. (Kn) - Hom((A®B)*",A®B)

ZXK~L T’Q

Co(Kn)® . (Kn) — Hom(A", A) & Hom (B®", B)

defines the A-algebra (A® B,~)
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Tensor Product of A,.-Algebras

o Given Ay-algebras (A, «) and (B, 3) and a diagonal
Ak : G (K) = G (K)® Ci (K), the composition

C. (Kn) - Hom((A®B)*",A®B)

ZXK~L T’Q

Co(Kn)® . (Kn) — Hom(A", A) & Hom (B®", B)

defines the A-algebra (A® B,~)

o Ay is the essential ingredient in the tensor product
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Historical Context

e S-U (2004) were the first to construct a cellular
combinatorial /differential graded formula for Ay

e Markl and Shnider (2006) were the first to prove the “magical
formula” for Al proposed by J-L Loday, whose components
are “matching pairs” of faces of matching dimensions
comparable with respect to Tamari order

e Masuda, Thomas, Tonks, and Vallette (2021) were the first to
construct a point-set topological diagonal map, which
descends to the magical formula at the cellular level

e Our proof that Ay = Al views the permutahedron P, as a
subdivision of K11 and appeals to the combinatorics of P,
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The Permutahedron P,

P, is an (n — 1)-dimensional polytope constructed by P. Schoute
(1911) whose faces are indexed either by planar rooted leveled trees
(PLTs) with n+ 1 leaves or ordered partitions of n:={1,2,...,n}

A DA

3112 31211
13]2 23|1
1|32 2|31

A
12/3

112/3 2|13

The Permutahedron P3
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Partitions and PLTs

15423
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Inductive Construction of P,

/\ A/i\/&

201

P1

3]1)2
132
1)32
123
123

P3 as a subdivision of P, x I

112
P,=P; x1
312 321
23]1
$ 123 2[3|1
2|13
123 2(1/3
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Inductive Construction of P,

P4 as a Subdivision of P3 x I

4123
24[13 34/12 14|23
$ 1243 234[1 134)2
[ ]
2(134 3124 1|234
12[34 23|14 13|24
123/4
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Tonks' Projection

e Tonks’ projection 6 : P, — K11 is given by forgetting levels
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Tonks' Projection

e Tonks’ projection 6 : P, — K11 is given by forgetting levels

e On P3; we have

P =20 ) =20 ) = A
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Tonks' Projection

e Tonks’ projection 6 : P, — K11 is given by forgetting levels

P =20 ) =20 ) = A

e A diagonal Ap on P, induces a diagonal Ak on K1 :

() oo )

nt+l ntl
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P, as a Subdivision of K, 1

e Tonks' projection applied to P, as a subdivision of 171
allows us to view Kj41 as a subdivision of 1" 1 as well...
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Associahedral and Subdivision Cells of P,

e An associahedral k-cell of P, is a k-face of K11

e A subdivision k-cell of P, is a k-cell of some associahedral

k-cell

e A non-degenerate vertex is an associahedral vertex

e A positive dimensional cell e C P, is non-degenerate if

|6(e)| = le|

Associahedral 1-cell

>0

—_———-e

Degenerate
subdivision 1-cell

Degenerate vertex

Non-degenerate
subdivision 1-cell
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Tamari Order

e The vertices of P, are identified with the permutations in S,
e The weak order on S, given by
”'|XI"XI'+1"" < ”’|XI'+1|XI'"” |fX, <X,'_|_]_

induces a p.o. on vertices and orients the 1-skeleton of P,

Let min e and max e denote the minimal and maximal
vertices of a face e

For example, min n =1|2|---|n and max n=n|---|2|1

Define e < €’ if 3 an oriented edge-path from max e to min ¢

6 induces a weak order on the faces {0(ej)} C Kpy1 :
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Tamari Order

e The vertices of P, are identified with the permutations in S,

e The weak order on S, given by
”"Xi‘xi—l—l“"<”‘|XI'+1|XI'“” ifX,‘<X,'+]_

induces a p.o. on vertices and orients the 1-skeleton of P,

e Let min e and max e denote the minimal and maximal
vertices of a face e

e For example, min n=1|2|---|n and max n=n|---|2|1
e Define e < ¢’ if 3 an oriented edge-path from max e to min ¢’

e 0 induces a weak order on the faces {0(e;)} C Kpt1 :
9(6,‘) < H(EJ') if €} < €j

e Tamari order is the restriction of weak order to vertices S
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Strong Complementary Pairs

Consider a vertex o = x1| - - - |xp

Reading from left-to-right and from right-to-left, construct
the partitions & 1|--- |7, and 04| --- |71 of maximal
decreasing subsets

Form the Strong Complementary Pair (SCP)

a0 X by =T 1|+ |Tp x Tl -+ |71

For example, the SCP associated with o = 4|2|1|3 is

3y X by = 01|02 x 3| 2|71 = 421|3 x 4]2/13
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Properties of SCPs

The SCP associated with 4]2|1|3 is 421|3 x 4|2|13

In general, for an SCP a, x b, := ?1| i |<Ep X ?q| . \71
e ptg=n+l
® 0 = maxa, = min b,

e min & ; < max ?i+1 for all i < p (i increases left-to-right)

TGTS



Properties of SCPs

The SCP associated with 4]2|1|3 is 421|3 x 4|2|13

In general, for an SCP a, X by == G 1|--- |7 p x T4l -+ |1
e p+qg=n+1
e 0 = maxa, = min b,
e min & ; < max ?,-Jrl for all i < p (i increases left-to-right)

e min ?j < max ?J-Jrl for all j < g (j increases right-to-left)
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Step Matrix Representation

Given an SCP Aq]---|Ap X Bg| - --|B1, construct the corresponding

g X p step matrix representation :

Step matrix representation of 38/24/5|17|6 x 8|34|257|16

1

6
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Step Matrix Representation

Given an SCP Aq]---|Ap X Bg| - --|B1, construct the corresponding

g X p step matrix representation :

1. List the elements of A; contiguously, increasing and flush

down in column 1

Step matrix representation of 38/24/5|17|6 x 8|34|257|16

1

6
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Step Matrix Representation

Given an SCP Aq]---|Ap X Bg| - --|B1, construct the corresponding
g X p step matrix representation :

1. List the elements of A; contiguously, increasing and flush
down in column 1

2. List the elements of A; contiguously and increasing in column
i with max A; in the row of min A;_1

Step matrix representation of 38/24/5|17|6 x 8|34|257|16

116
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Derived Matrices

Given the step matrix representation of an SCP Ay|---|A,
X Bg| - -|Bu, iteratively contruct a g x p derived matrix :
1|6 16
2|5 2
3] 4 T3 (4|57
8 8

Derived matrix with My = Mo = {8}, Np = {5,7}
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Derived Matrices

Given the step matrix representation of an SCP Ay|---|A,
X Bg| - -|Bu, iteratively contruct a g x p derived matrix :

1. For each i, choose a subset M; C A; ~ min A;

If min M; > max A;1 shift M; right one column

Derived matrix with My = Mo = {8}, Np = {5,7}
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Derived Matrices

Given the step matrix representation of an SCP Ay|---|A,
X Bg| - -|Bu, iteratively contruct a g x p derived matrix :

1. For each i, choose a subset M; C A; ~ min A;

If min M; > max A;1 shift M; right one column

2. For each j, choose a subset N; C B; \. min B;

Derived matrix with My = Mo = {8}, Np = {5,7}
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Derived Matrices

Given the step matrix representation of an SCP Ay|---|A,
X Bg| - -|Bu, iteratively contruct a g x p derived matrix :

1. For each i, choose a subset M; C A; ~ min A;
If min M; > max A;1 shift M; right one column

2. For each j, choose a subset N; C B; \. min B;

If min N; > max Bj; shift N; down one row

Derived matrix with My = Mo = {8}, Np = {5,7}
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Complementary Pairs

Given a g x p derived matrix with columns A} --- A’ and rows
Bj --- By, the corresponding complementary pair (CP) is

ALl AL X BL| - |B}

<> 3|24/58|17|6 x 8|3457|2|16

TGTS



Effect of Shift Actions on P, x P,

4213

[ ]

124[3 ¢
124]3 x 42|13
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Right-Shifts Decrease Order of Left Factors

4213

[ ]

12|34 x 4[2]13

12/34
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Down-Shifts Increase Order of Right Factors

12[34 x 4[23|1

_4[23]1

12/34
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Let A, X B, denote the set of all CPs arising from o € S,
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The S-U Diagonal Ap

Let A, X B, denote the set of all CPs arising from o € S,

Ap(n):= |J As x B,
ogES,

Ap(3) is the union of
A1pjs X Bz = {1]23 x 123}
A1‘3|2 X Bl|3\2 = {1’23 X 13|2}
Aoz X Bojrjz = {12]3 x 2|13, 12|3 x 23|1}
Ao X Bz = {2[13 x 231}
A3‘1|2 X B3|1‘2 = {13‘2 X 3’12, 1‘23 X 3‘12}
A3‘2|1 X B3|2‘1 = {123 X 3‘2’1}
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The S-U Diagonal Ap

Let A, X B, denote the set of all CPs arising from o € S,

Ap(n):= |J As x B,
ogES,

Ap(3) is the union of
A1pjs X Bz = {1]23 x 123}
A1‘3|2 X Bl|3\2 = {1’23 X 13|2}
Aoz X Bojrjz = {12]3 x 2|13, 12|3 x 23|1}
Ao X Bz = {2[13 x 231}
A3‘1|2 X B3|1‘2 = {13‘2 X 3’12, 1‘23 X 3‘12}
A3‘2|1 X B3|2‘1 = {123 X 3‘2’1}

Extend Ap to faces of P, multiplicatively :
Ap(Ar] -+ |Ap) = Ap(A1)| -~ [Ap(Ap)

TGTS



The S-U Diagonal Ak

e A partition Aq|---|A, is degenerate if for some j and k,
there exist x,z € Ajand y € Aj;x suchthat x <y <z
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The S-U Diagonal Ak

e A partition Aq|---|A, is degenerate if for some j and k,
there exist x,z € Ajand y € Aj;x suchthat x <y <z

e A CP a x b is non-degenerate if a and b are non-degenerate

e Let e"! denote the top dimensional cell of Knt1

Ax(e") = ] 0(As) x 6(B)

O'GSn

Ak (€?) is the union of
A1j2)3 X Byjgjz = {1]2[3 x 123}
Aoz % Bojijz = {12]3 x 2|13, 123 x 23|1}
A2‘3|1 X Bz|3‘1 = {2’13 X 23’1}
A3‘1|2 X B3|1‘2 = {1’23 X 3|12}
A3‘2|1 X B3|2‘1 = {123 X 3|2’1}
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The Magical Formula
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The Magical Formula

e A pair of faces a x b C K11 X Kyt1 is a Matching Pair
(MP) if
i.a<b

i. Ja|+|bl=n—1

e The “Magical Formula" :

Ny (e”71> = U {a x b}
MPs of faces

axb C Knpr1xKnt1
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Al on Ky : N
3211
AN ZN
3112 23|1
AN AN
3112 2/3)1
AN A
1123 2113
A\
11213 A 2113
123
MPs ax b C Ky X Ky :
axb maxa | minb
112|3 x 123 | 1|2|13 | 1]2|3
12|3 x 2|13 | 2|1|3 | 2|1|3
12|13 x 23]1 | 2|1|13 | 2J3]1
2113 x 23|11 | 2J3]1 | 2|3|]1
1123 x 312 | 13|12 | 3|1|2
123 x 3|2|1 | 3J2|1 | 3J2]1
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Equality of Ak and Al

e Ay and A agree on Ky, so this is encouraging
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Equality of Ak and Al

e Ay and A agree on Ky, so this is encouraging
e ( sends every non-degenerate CP to an MP by definition

e Theorem (S-U 2022) Every MP is the image of a unique
non-degenerate CP under 0; thus A}, = Ay

TGTS



Outline of Proof

e View P, as a subdivision of K11
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Outline of Proof

e View P, as a subdivision of K11

e The maximal (respt. minimal) subdivision k-cell of an
associahedral k-cell a, denoted by amax (respt. amin), satisfies
Max amax = Max a (respt. min amin = min a)

Proposition Let a be an associahedral k-cell of Py,
i. Then anin is a non-degenerate left factor of a CP

ii. If u amin is a subdivision k-cell of a, then
u is a degenerate right factor of a CP

e Factors of non-degenerate CPs are minimal subdivision cells
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Outline of Proof

e Given a vertex o of P,, recall the SCP a, x b,

Proposition Let o be an associahedral vertex of P,,.
If ¢ is a non-degenerate cell of P, such that |c| = |b,|
and o = min b, < min ¢, then c is the right factor
of a CP derived from a, X b,.

Example Consider o = 2|1|3, the associated SCP
a, X by = 12|3 x 2|13 and the non-degenerate 1-cell
¢ = 23|1. Then min b, = 2|1|3 < minc = 2|3|1 and c is the
right factor of the CP 12|3 x 23|1 derived from a, x b,.

L c=231
$ 123 ¢231

* b, =213
[

]
a, = 12|3 2113 TGTS



Outline of Proof

e Identify each k-face F C K11 with the corresponding
associahedral k-cell F C Py; then 0 (Fmin) = F
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Outline of Proof

e Identify each k-face F C K11 with the corresponding
associahedral k-cell F C Py; then 0 (Fmin) = F

e Label F with the partition of Fpin
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Outline of Proof

4123
24/13 34/12 14|23
$ 1243 2341 134/2
q
2|134 3]124 1|234
12[34 23|14 13|24
1234
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Outline of Proof

4123
34/12
234[1
12[34 2(134 1|234
3124
23|14
1234
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Outline of Proof

Theorem If F x G C Kpy1 X Kpy1 is an MP,
then Frin X Gmin C P, x P, is a CP and
0 (Fmin) X 0 (Gmin) = F x G. Thus Al = Ak.
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then Frin X Gmin C P, x P, is a CP and
0 (Fmin) X 0 (Gmin) = F x G. Thus Al = Ak.
Example Consider the MP F x G = 12|34 x 4]23|1 C K5 X Ks
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Outline of Proof

Theorem If F x G C Kpy1 X Kpy1 is an MP,
then Fmin X Gmin C Pn X P, is a CP and
H(fmin) X H(Qmin) =F x G. Thus A\, = AK.
Example Consider the MP F x G = 12|34 x 4|23|1 C K5 x K5

_423[1

1243 4
A

P&

12[34

On Py, F = 12|34 U 1243, Fimin X Gmin = 12|34 x 4231 is a
CP, and 6 (12/43) x 6 (4[23]1) = 1234 x 4|23]1
TGTS



In Summary...

o If Fis a k-face of Kj,11, Fmin is the ungiue non-degenerate
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In Summary...

o If Fis a k-face of Kj,11, Fmin is the ungiue non-degenerate
subdivision k-cell of the associahedral k-cell 7 C P,

o If FX G C Kpr1 X Kpy1 is an MP, then Frin X Gmin is a CP

° Q(fmin) X H(Qmin) =FxG

TGTS



The End

THANK YOU!
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