Function-encoding Quantum States

David W. Lyons

Mathematical Sciences, Lebanon Valley College

Tetrahedral Geometry-Topology Seminar 7 February 2020

2 Motivation to Study Quantum Hypergraph States

2 Motivation to Study Quantum Hypergraph States

3 Some results

•
$$f(x, y, z) = x + xy + yz + xyz$$

- f(x, y, z) = x + xy + yz + xyz
- $f: B^3 \to B$
- $B = \mathbb{Z}_2 = \{0, 1\}$

- f(x, y, z) = x + xy + yz + xyz
- $f: B^3 \to B$
- $B = \mathbb{Z}_2 = \{0, 1\}$
- for example, $f(1,1,0) = 1 + 1 \cdot 1 + 1 \cdot 0 + 1 \cdot 1 \cdot 0 = 0$

• f(x, y, z) = x + xy + yz + xyz• $f: B^3 \to B$ • $B = \mathbb{Z}_2 = \{0, 1\}$ • for example, $f(1, 1, 0) = 1 + 1 \cdot 1 + 1 \cdot 0 + 1 \cdot 1 \cdot 0 = 0$ $(x, y, z) \mid 000 \quad 001 \quad 010 \quad 011 \quad 100 \quad 101 \quad 110 \quad 111$ $f(x, y, z) \mid 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 0$

• f(x, y, z) = x + xy + yz + xyz• $f: B^3 \to B$ • $B = \mathbb{Z}_2 = \{0, 1\}$ • for example, $f(1, 1, 0) = 1 + 1 \cdot 1 + 1 \cdot 0 + 1 \cdot 1 \cdot 0 = 0$ $(x, y, z) \mid 000 \quad 001 \quad 010 \quad 011 \quad 100 \quad 101 \quad 110 \quad 111$ $f(x, y, z) \mid 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 0$

Fact: All Boolean functions are polynomials

Fact: All Boolean functions are polynomials Proof?

• f(x, y, z) = x + xy + yz + xyz• $f: B^3 \to B$ • $B = \mathbb{Z}_2 = \{0, 1\}$ • for example, $f(1, 1, 0) = 1 + 1 \cdot 1 + 1 \cdot 0 + 1 \cdot 1 \cdot 0 = 0$ $(x, y, z) \mid 000 \quad 001 \quad 010 \quad 011 \quad 100 \quad 101 \quad 110 \quad 111$ $f(x, y, z) \mid 0 \quad 0 \quad 0 \quad 1 \quad 1 \quad 1 \quad 0 \quad 0$

Fact: All Boolean functions are polynomials Proof?

Just count! $\#{f: B^n \to B} = 2^{2^n}$

Ingredient 2: a hypergraph

Ingredient 2: a hypergraph

(counting again) #{hypergraphs on *n* vertices} = 2^{2^n}

- the space of 3-qubit states is \mathbb{C}^8
- basis vectors are *e*₀₀₀, *e*₀₀₁, *e*₀₁₀, ..., *e*₁₁₁

- the space of 3-qubit states is \mathbb{C}^8
- basis vectors are *e*₀₀₀, *e*₀₀₁, *e*₀₁₀, ..., *e*₁₁₁
- \bullet basis in Dirac notation is $\left|000\right\rangle,\left|001\right\rangle,\left|010\right\rangle,\ldots,\left|111\right\rangle$

- the space of 3-qubit states is \mathbb{C}^8
- basis vectors are *e*₀₀₀, *e*₀₀₁, *e*₀₁₀, ..., *e*₁₁₁
- \bullet basis in Dirac notation is $\left|000\right\rangle,\left|001\right\rangle,\left|010\right\rangle,\ldots,\left|111\right\rangle$

(x, y, z)	000	001	010	011	100	101	110	111
f(x, y, z)	0	0	0	1	1	1	0	0
$(-1)^{f(x,y,z)}$	1	1	1	-1	-1	-1	1	1

- the space of 3-qubit states is \mathbb{C}^8
- basis vectors are *e*₀₀₀, *e*₀₀₁, *e*₀₁₀, ..., *e*₁₁₁
- $\bullet\,$ basis in Dirac notation is $\left|000\right\rangle,\left|001\right\rangle,\left|010\right\rangle,\ldots,\left|111\right\rangle$

(x, y, z)	000	001	010	011	100	101	110	111
f(x, y, z)	0	0	0	1	1	1	0	0
$(-1)^{f(x,y,z)}$	1	1	1	$^{-1}$	-1	-1	1	1

 $|\psi_f\rangle:=|000\rangle+|001\rangle+|010\rangle-|011\rangle-|100\rangle-|101\rangle+|110\rangle+|111\rangle$

Summary of correspondences

$$[f: B^n \to B] \quad \longleftrightarrow \quad G_f \quad \longleftrightarrow \quad |\psi_f\rangle$$

Summary of correspondences

$$[f: B^n \to B] \quad \longleftrightarrow \quad G_f \quad \longleftrightarrow \quad |\psi_f\rangle$$

Summary of correspondences

$$[f: B^n \to B] \quad \longleftrightarrow \quad G_f \quad \longleftrightarrow \quad |\psi_f\rangle$$

- f: a polynomial in variables x_1, x_2, \ldots, x_n
- G_f : a vertex for each variable, a (hyper)edge for each monomial in f

•
$$|\psi_f\rangle = \sum_{i_1,i_2,...,i_n} (-1)^{f(i_1,i_2,...,i_n)} |i_1i_2...i_n\rangle$$

• a vector of values (vector entry labeled $(i_1, i_2, ..., i_n)$ is $f(i_1, i_2, ..., i_n)$)

- a vector of values (vector entry labeled (i_1, i_2, \ldots, i_n) is $f(i_1, i_2, \ldots, i_n)$)
- a vector of monomial coefficients (vector entry (i_1, i_2, \ldots, i_n) is coefficient of $x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n}$)

- a vector of values (vector entry labeled (i_1, i_2, \dots, i_n) is $f(i_1, i_2, \dots, i_n)$)
- a vector of monomial coefficients (vector entry (i_1, i_2, \ldots, i_n) is coefficient of $x_1^{i_1} x_2^{i_2} \cdots x_n^{i_n}$)

Problem: how to convert between these two representations?

$$\begin{bmatrix} 0\\0\\f(00)\\f(00)\\f(00)\\f(01)\\f(010)\\f(010)\\f(011)\\f(100)\\f(110)\\0\\f(111)\end{bmatrix}$$

$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix} \begin{pmatrix} 0 \\ 3 \end{pmatrix} \begin{pmatrix} 0 \\ 4 \end{pmatrix} \begin{pmatrix} 0 \\ 5 \end{pmatrix} \begin{pmatrix} 0 \\ 6 \end{pmatrix} \begin{pmatrix} 0 \\ 7 \end{pmatrix}$	[0]	f(000)	ΓΟΓ	$x^0y^0z^0$
$ \begin{array}{c} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{bmatrix} 1 \\ 1 \end{pmatrix} \begin{bmatrix} 1 \\ 2 \end{pmatrix} \begin{bmatrix} 1 \\ 3 \end{pmatrix} \begin{bmatrix} 1 \\ 4 \end{pmatrix} \begin{bmatrix} 1 \\ 5 \end{bmatrix} \begin{bmatrix} 1 \\ 6 \end{pmatrix} \begin{bmatrix} 1 \\ 7 \end{pmatrix} $	0	f(001)	0	$x^0y^0z^1$
$ \begin{pmatrix} 2 \\ 0 \end{pmatrix} \begin{bmatrix} 2 \\ 1 \end{pmatrix} \begin{bmatrix} 2 \\ 2 \end{pmatrix} \begin{bmatrix} 2 \\ 3 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \end{bmatrix} \begin{bmatrix} 2 \\ 5 \end{bmatrix} \begin{bmatrix} 2 \\ 6 \end{bmatrix} \begin{bmatrix} 2 \\ 7 \end{bmatrix} $	0	f(010)	0	$x^0y^1z^0$
$ \begin{pmatrix} 3 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} \begin{pmatrix} 3 \\ 5 \end{pmatrix} \begin{pmatrix} 3 \\ 6 \end{pmatrix} \begin{pmatrix} 3 \\ 7 \end{pmatrix} $		f(011) _		$x^0y^1z^1$
$ \begin{pmatrix} 4 \\ 0 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} 4 \\ 5 \end{pmatrix} \begin{pmatrix} 4 \\ 6 \end{pmatrix} \begin{pmatrix} 4 \\ 7 \end{pmatrix} $		f(100) =		$x^1y^0z^0$
$ \begin{array}{c c} (5 \\ 0 \end{array} & (5 \\ 1 \end{array} & (5 \\ 2 \end{array} & (5 \\ 3 \end{array} & (5 \\ 4 \end{array} & (5 \\ 5 \end{array} & (5 \\ 6 \end{array} & (5 \\ 7 \end{array}) $		f(101)	0	$x^1y^0z^1$
$ \begin{pmatrix} 6 \\ 0 \end{pmatrix} \begin{pmatrix} 6 \\ 1 \end{pmatrix} \begin{pmatrix} 6 \\ 2 \end{pmatrix} \begin{pmatrix} 6 \\ 3 \end{pmatrix} \begin{pmatrix} 6 \\ 3 \end{pmatrix} \begin{pmatrix} 6 \\ 4 \end{pmatrix} \begin{pmatrix} 6 \\ 5 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \end{pmatrix} \begin{pmatrix} 6 \\ 7 \end{pmatrix} $	0	f(110)		$x^1y^1z^0$
$ \begin{pmatrix} 7 \\ 0 \end{pmatrix} \begin{pmatrix} 7 \\ 1 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 3 \end{pmatrix} \begin{pmatrix} 7 \\ 3 \end{pmatrix} \begin{pmatrix} 7 \\ 4 \end{pmatrix} \begin{pmatrix} 7 \\ 5 \end{pmatrix} \begin{pmatrix} 7 \\ 6 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} $	[0]	f(111)	$\begin{bmatrix} 1 \end{bmatrix}$	$x^1y^1z^1$

Pascal's triangle mod 2 converts Boolean function tables to polynomials

- Pascal's triangle mod 2 converts Boolean function tables to polynomials
- Pascal's triangle mod 2 is self inverse!

- Pascal's triangle mod 2 converts Boolean function tables to polynomials
- Pascal's triangle mod 2 is self inverse!
- Pascal's triangle mod 2 converts polynomials to Boolean function tables

Lyons (LVC)

2 Motivation to Study Quantum Hypergraph States

Motivation for studying hypergraph states

• Grover search algorithm

- Grover search algorithm
- graph states, measurement-based quantum computation (MBQC)
- Grover search algorithm
- graph states, measurement-based quantum computation (MBQC)
- construction: each monomial in *f*, equivalently, each hyperedge in the hypergraph, describes an operator on the subspace of qubits involved that is diagonal in the computational basis

- Grover search algorithm
- graph states, measurement-based quantum computation (MBQC)
- construction: each monomial in *f*, equivalently, each hyperedge in the hypergraph, describes an operator on the subspace of qubits involved that is diagonal in the computational basis
- foundational questions about nonlocality and entanglement properties

- Grover search algorithm
- graph states, measurement-based quantum computation (MBQC)
- construction: each monomial in *f*, equivalently, each hyperedge in the hypergraph, describes an operator on the subspace of qubits involved that is diagonal in the computational basis
- foundational questions about nonlocality and entanglement properties
- "spooky action at a distance", the poster child of motivational stories

- polynomial xy
- hypergraph (graph, actually) 🛞 🕑
- quantum state $|00\rangle+|01\rangle+|10\rangle-|11\rangle$

Standard basis for 1-qubit state space \mathbb{C}^2 $\bigcirc = \begin{bmatrix} 1\\0 \end{bmatrix} \qquad \bullet = \begin{bmatrix} 0\\1 \end{bmatrix}$

Another basis for
$$\mathbb{C}^2$$

$$\bullet = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\1 \end{bmatrix} \qquad \bullet = \frac{1}{\sqrt{2}} \begin{bmatrix} 1\\-1 \end{bmatrix}$$

Standard basis for 1-qubit state space \mathbb{C}^2 $\bigcirc = \begin{bmatrix} 1\\0 \end{bmatrix} \qquad \bullet = \begin{bmatrix} 0\\1 \end{bmatrix}$

EPR state =
$$\bigcirc$$
 + \bigcirc

2020.02.07 14 / 34

Communication Task Scenario

Alice and Bob run independent labs may be separated by large distance

EPR Protocol Step 1

Factory prepares EPR state Sends 1 qubit to Alice, 1 to Bob

2020.02.07 17 / 34

EPR Protocol Step 3

Bob measures his qubit

Post measurement state is \bigcirc

11

EPR Protocol Step 1, again

Factory prepares EPR state Sends 1 qubit to Alice, 1 to Bob

EPR Protocol Step 3, again Bob measures his qubit

Post measurement state is \bigcirc

Alice's measurement determines the result of Bob's. Even if they are separated by great distance.

- Alice's measurement determines the result of Bob's. Even if they are separated by great distance.
- This is *not* science fiction. This EPR experiment is performed routinely in labs all over the world on a daily basis.

Alice's measurement determines the result of Bob's. Even if they are separated by great distance.

This is *not* science fiction. This EPR experiment is performed routinely in labs all over the world on a daily basis.

The first experiment to demonstrate the EPR measurement was by Alain Aspect in 1982.

Intellectual dissonance

"... spooky action at a distance"

2 Motivation to Study Quantum Hypergraph States

Local Unitary (LU) Action

A 2×2 unitary acts on a vector in \mathbb{C}^2

$$U = \begin{bmatrix} a & b \\ c & c \end{bmatrix}$$
$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$
$$U |\psi\rangle = (a\alpha + b\beta) |0\rangle + (c\alpha + d\beta) |1\rangle$$

Local Unitary (LU) Action

A 2 \times 2 unitary acts on a vector in \mathbb{C}^2

$$U = \begin{bmatrix} a & b \\ c & c \end{bmatrix}$$
$$|\psi\rangle = \alpha |0\rangle + \beta |1\rangle = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$
$$U |\psi\rangle = (a\alpha + b\beta) |0\rangle + (c\alpha + d\beta) |1\rangle$$

An *n*-tuple of 2 × 2 unitaries acts on a vector in $(\mathbb{C}^2)^{\otimes n}$

$$\begin{aligned} (U_1, U_2, \dots, U_n) \ket{\psi_1} \otimes \ket{\psi_2} \otimes \dots \otimes \ket{\psi_n} \\ &= (U_1 \ket{\psi_1}) \otimes (U_2 \ket{\psi_2}) \otimes \dots \otimes (U_n \ket{\psi_n}) \end{aligned}$$

A random LU operator moves a hypergraph to a state that is not a hypergraph.

A random LU operator moves a hypergraph to a state that is not a hypergraph.

But some LU operators preserve the space of hypergraphs.

A random LU operator moves a hypergraph to a state that is not a hypergraph.

But some LU operators preserve the space of hypergraphs.

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad \qquad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

A random LU operator moves a hypergraph to a state that is not a hypergraph.

But some LU operators preserve the space of hypergraphs.

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad \qquad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$egin{aligned} Z_1Z_2(\mathsf{EPR}) &= (Z\otimes Z)(|00
angle + |01
angle + |10
angle - |11
angle) \ &= |00
angle - |01
angle - |10
angle - |11
angle \end{aligned}$$

A random LU operator moves a hypergraph to a state that is not a hypergraph.

But some LU operators preserve the space of hypergraphs.

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad \qquad Z = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$egin{aligned} Z_1Z_2(\mathsf{EPR}) &= (Z\otimes Z)(\ket{00}+\ket{01}+\ket{10}-\ket{11})\ &= \ket{00}-\ket{01}-\ket{10}-\ket{11} \end{aligned}$$

A particular state may have more subtle LU stabilizers.

$$\begin{bmatrix} \exp(itZ) \otimes \exp(-itX) \end{bmatrix} (\text{EPR}) \\ = \left(\begin{bmatrix} e^{it} & 0 \\ 0 & e^{-it} \end{bmatrix} \otimes \begin{bmatrix} \cos t & -i\sin t \\ -i\sin t & \cos t \end{bmatrix} \right) (\text{EPR}) \\ = \text{EPR}$$

Entanglement

LU-equivalent states share the same nonlocal properties. Such states are said to have the same *entanglement type*.

Entanglement

LU-equivalent states share the same nonlocal properties. Such states are said to have the same *entanglement type*.

Central question

Classify the possible entanglement types, that is, classify orbits of the LU action on state space.

Observation

Under any group action on any set, if two points are equivalent under the group action, then the stabilizer subgroups of those points are isomorphic.

Observation

Under any group action on any set, if two points are equivalent under the group action, then the stabilizer subgroups of those points are isomorphic.

Consequence

LU stabilizers are entanglement invariants.

A Result: Hypergraphs stabilized by $X^{\otimes k}$

Motivations: codes, nonlocality

A Result: Hypergraphs stabilized by $X^{\otimes k}$

Motivations: codes, nonlocality Construction of $X^{\otimes k}$ -stable states"

Motivations: codes, nonlocality Construction of $X^{\otimes k}$ -stable states"

Extraction:

• polynomials are in *n* variables over \mathbb{F}_d

- polynomials are in *n* variables over \mathbb{F}_d
- states are superpositions (linear combinations) of "dit strings" with coefficients that are powers of *d*-th roots of unity

- polynomials are in n variables over \mathbb{F}_d
- states are superpositions (linear combinations) of "dit strings" with coefficients that are powers of *d*-th roots of unity
- *d*-hypergraphs seem to be of limited usefulness
- polynomials are in n variables over \mathbb{F}_d
- states are superpositions (linear combinations) of "dit strings" with coefficients that are powers of *d*-th roots of unity
- *d*-hypergraphs seem to be of limited usefulness
- generalizations of Pauli X, Z

Sample result

Sample result

There are $d^{(d^n)}$ functions $(\mathbb{F}_d)^n \to \mathbb{F}_d$, so $3^{(3^2)} = 19,683$ for d = 3, n = 2

2 Motivation to Study Quantum Hypergraph States

Work on hypergraph states is...

Work on hypergraph states is...

• well motivated

Work on hypergraph states is...

- well motivated
- full combinatorial elegance and fun

Work on hypergraph states is. . .

- well motivated
- full combinatorial elegance and fun
- cool results

Work on hypergraph states is. . .

- well motivated
- full combinatorial elegance and fun
- cool results
- short on general results

Work on hypergraph states is. . .

- well motivated
- full combinatorial elegance and fun
- cool results
- short on general results
- still in search of a killer app

Thank you!

LVC Mathematical Physics Research Group

David Lyons Isaac Lehman David Campbell http://quantum.lvc.edu/mathphys