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Ingredient 1: a Boolean function

Example:

f (x , y , z) = x + xy + yz + xyz

f : B3 → B

B = Z2 = {0, 1}
for example, f (1, 1, 0) = 1 + 1 · 1 + 1 · 0 + 1 · 1 · 0 = 0

(x , y , z) 000 001 010 011 100 101 110 111

f (x , y , z) 0 0 0 1 1 1 0 0

Fact: All Boolean functions are polynomials
Proof?
Just count! #{f : Bn → B} = 22

n
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Ingredient 2: a hypergraph

x

y

z

x + xy + yz + xyz

(counting again) #{hypergraphs on n vertices} = 22
n
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Ingredient 3: a state vector of many quantum bits

the space of 3-qubit states is C8

basis vectors are e000, e001, e010, . . . , e111

basis in Dirac notation is |000〉 , |001〉 , |010〉 , . . . , |111〉
(x , y , z) 000 001 010 011 100 101 110 111

f (x , y , z) 0 0 0 1 1 1 0 0

(−1)f (x ,y ,z) 1 1 1 −1 −1 −1 1 1

|ψf 〉 := |000〉+ |001〉+ |010〉 − |011〉 − |100〉 − |101〉+ |110〉+ |111〉
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Summary of correspondences

[f : Bn → B] ←→ Gf ←→ |ψf 〉

[x + xy + yz + xyz ] ←→
x

y

z

←→ |ψf 〉

f : a polynomial in variables x1, x2, . . . , xn

Gf : a vertex for each variable, a (hyper)edge for each monomial in f

|ψf 〉 =
∑

i1,i2,...,in

(−1)f (i1,i2,...,in) |i1i2 . . . in〉
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Amusing math problem

Consider two specifications of a boolean function:

a vector of values (vector entry labeled (i1, i2, . . . , in) is
f (i1, i2, . . . , in))

a vector of monomial coefficients (vector entry (i1, i2, . . . , in) is
coefficient of x i11 x

i2
2 · · · x inn )

Problem: how to convert between these two representations?
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Conversion example:
|000〉+ |001〉+ |010〉−|011〉−|100〉−|101〉+ |110〉+ |111〉
to x + xy + yz + xyz



1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0
1 1 1 1 0 0 0 0
1 0 0 0 1 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1





0
0
0
1
1
1
0
0



f (000)
f (001)
f (010)
f (011)
f (100)
f (101)
f (110)
f (111)

→=



0
0
0
1
1
0
1
1



x0y0z0

x0y0z1

x0y1z0

x0y1z1

x1y0z0

x1y0z1

x1y1z0

x1y1z1
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Conversion example, cont’d:
|000〉+ |001〉+ |010〉−|011〉−|100〉−|101〉+ |110〉+ |111〉
to x + xy + yz + xyz







0
0
0
1
1
1
0
0



f (000)
f (001)
f (010)
f (011)
f (100)
f (101)
f (110)
f (111)

=



0
0
0
1
1
0
1
1



x0y0z0

x0y0z1

x0y1z0

x0y1z1

x1y0z0

x1y0z1

x1y1z0

x1y1z1

Pascal’s triangle mod 2 converts Boolean function tables to
polynomials
Pascal’s triangle mod 2 is self inverse!
Pascal’s triangle mod 2 converts polynomials to Boolean function
tables
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Motivation for studying hypergraph states

Grover search algorithm

graph states, measurement-based quantum computation (MBQC)

construction: each monomial in f , equivalently, each hyperedge in the
hypergraph, describes an operator on the subspace of qubits involved
that is diagonal in the computational basis

foundational questions about nonlocality and entanglement properties

“spooky action at a distance”, the poster child of motivational stories
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The EPR state

polynomial xy

hypergraph (graph, actually) x y

quantum state |00〉+ |01〉+ |10〉 − |11〉
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The EPR state, cont’d

Standard basis for 1-qubit state space C2

=

[
1
0

]
=

[
0
1

]

Another basis for C2

= 1√
2

[
1
1

]
= 1√

2

[
1
−1

]

EPR state = +
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Communication Task Scenario

may be separated by large distance

Alice and Bob run independent labs
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EPR Paradox

EPR Protocol Step 1

Sends 1 qubit to Alice, 1 to Bob

+

Factory prepares EPR state
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EPR Paradox

Alice measures his qubit

EPR Protocol Step 2

Post measurement state is

I got
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EPR Paradox

EPR Protocol Step 3
Bob measures his qubit

Post measurement state is

I got
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EPR Paradox

EPR Protocol Step 1, again

Sends 1 qubit to Alice, 1 to Bob

+

Factory prepares EPR state
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EPR Paradox
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EPR Paradox

EPR Protocol Step 3, again
Bob measures his qubit

Post measurement state is

I got
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EPR Paradox

Alice’s measurement determines the result of Bob’s. Even if they are
separated by great distance.

This is not science fiction. This EPR experiment is performed routinely in
labs all over the world on a daily basis.

The first experiment to demonstrate the EPR measurement was by Alain
Aspect in 1982.
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Intellectual dissonance

“. . . spooky action at a distance”
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Local Unitary (LU) Action

A 2× 2 unitary acts on a vector in C2

U =

[
a b
c c

]
|ψ〉 = α |0〉+ β |1〉 =

[
α
β

]
U |ψ〉 = (aα + bβ) |0〉+ (cα + dβ) |1〉

An n-tuple of 2× 2 unitaries acts on a vector in (C2)
⊗n

(U1,U2, . . . ,Un) |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉
= (U1 |ψ1〉)⊗ (U2 |ψ2〉)⊗ · · · ⊗ (Un |ψn〉)
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LU action on hypergraphs

A random LU operator moves a hypergraph to a state that is not a
hypergraph.

But some LU operators preserve the space of hypergraphs.

X =

[
0 1
1 0

]
Z =

[
1 0
0 −1

]

Z1Z2(EPR) = (Z ⊗ Z )(|00〉+ |01〉+ |10〉 − |11〉)
= |00〉 − |01〉 − |10〉 − |11〉

A particular state may have more subtle LU stabilizers.

[exp(itZ )⊗ exp(−itX )] (EPR)

=

([
e it 0
0 e−it

]
⊗
[

cos t −i sin t
−i sin t cos t

])
(EPR)

= EPR
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LU equivalence

Entanglement

LU-equivalent states share the same nonlocal properties. Such states are
said to have the same entanglement type.

Central question

Classify the possible entanglement types, that is, classify orbits of the LU
action on state space.
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Local Unitary Stabilizers

Observation

Under any group action on any set, if two points are equivalent under the
group action, then the stabilizer subgroups of those points are isomorphic.

Consequence

LU stabilizers are entanglement invariants.
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A Result: Hypergraphs stabilized by X⊗k

Motivations: codes, nonlocality

Construction of X⊗k -stable states”

Extraction:
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Generalization to characteristic d > 2

polynomials are in n variables over Fd

states are superpositions (linear combinations) of “dit strings” with
coefficients that are powers of d-th roots of unity

d-hypergraphs seem to be of limited usefulness

generalizations of Pauli X , Z
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Sample result

Theorem (classification of local generalized Pauli classes for d = 3,
n = 2)

0 (this is the class of the product state)

xy

xy2

x2y

x2y + y2x

x2y2

2x2y2

x2y2 + xy

2x2y2 + xy

There are d (dn) functions (Fd)n → Fd , so 3(3
2) = 19, 683 for d = 3, n = 2
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Summary

Work on hypergraph states is. . .

well motivated

full combinatorial elegance and fun

cool results

short on general results

still in search of a killer app
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Thank you!

LVC Mathematical Physics Research Group

David Lyons Isaac Lehman David Campbell

http://quantum.lvc.edu/mathphys
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