

・ロト・(局)・(目)・(目)・(日)・(の)

Tetrahedral Geometry and Topology Seminar Deformation Theory Seminar

October 14, 2016

Seaweed and poset algebras synergies and cohomology

Part I Seaweeds

by

Vincent E. Coll, Jr.*

A report on joint work with Matt Hyatt** and Colton Magnant***

*Lehigh University **Pace University _____**Ceorgia Southern University **

October 14, 2016 2 / 31

OBJECTS

Frobenius seaweed subalgebras of simple Lie algebras

Simple $A_n = \mathfrak{sl}(n), B_n = \mathfrak{so}(2n+1), C_n = \mathfrak{sp}(2n), D_n = \mathfrak{so}(2n)$ E_6, E_7, E_8, F_4, G_2

> Frobenius $B_F[x, y] = F[x, y]$ ind $\mathfrak{g} = \min_{F \in \mathfrak{g}^*} \dim \ker B_F$.

Seaweeds

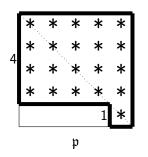
$$\begin{array}{l} \mathfrak{g} \text{ simple} \\ \mathfrak{p}, \ \mathfrak{p}' \text{ parabolic subalgebras with } \mathfrak{p} + \mathfrak{p}' = \mathfrak{g} \\ \mathfrak{p} \cap \mathfrak{p}' \text{ is a seaweed} \end{array}$$

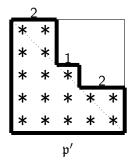
(日) (同) (三) (三)

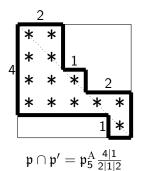
Special linear Lie algebra

$$\mathfrak{sl}(n) = \{A \in \mathfrak{gl}(n) \mid \mathsf{tr}(A) = 0\}$$

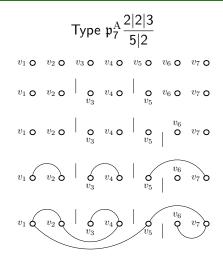
Type-A seaweed







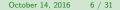
Index computation – Meanders



Theorem (Dergachev and Kirillov, 2000) For a seaweed $\mathfrak{g} \subseteq \mathfrak{sl}(n)$, ind $\mathfrak{g} = 2C + P - 1$

Not so easy in practice

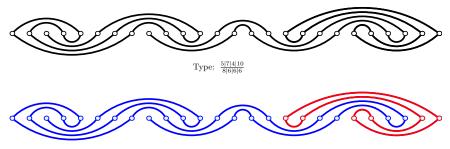
Type: $\frac{5|7|4|10}{8|6|6|6}$



- 21

<ロ> (日) (日) (日) (日) (日)

Not so easy in practice



<ロ> (日) (日) (日) (日) (日)

- 2

6 / 31

October 14, 2016

Index: 2

Theorem (Elashvilli (1990), C., Magnant, and Giaquinto (2010)) If n = a + b with (a, b) = 1, then $\frac{a|b}{n}$ is Frobenius.

Theorem (C., Hyatt, Magnant, and Wang (2015)) If n = a + b + c with (a + b, b + c) = 1, then $\frac{a|b|c}{n}$ is Frobenius.

Theorem (Karnauhova and Liebscher (2015)) If $m \ge 4$, then \nexists homogeneous $f_1, f_2 \in \mathbb{Z}[x_1, \dots, x_m]$ such that

$$ind\frac{a_1|a_2|\cdots|a_m}{n}=\gcd(f_1(a_1,\ldots,a_m),f_2(a_1,\ldots,a_m)).$$

イロン 不聞 とくほど 不良 とうせい

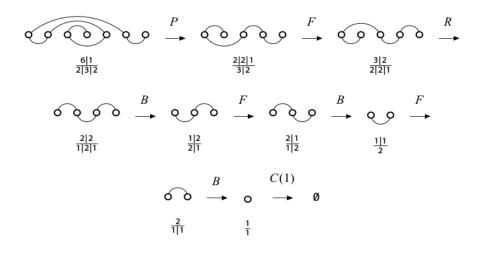
October 14, 2016

$$\frac{a_1|a_2|\cdots|a_m}{b_1|b_2|\cdots|b_t} \longrightarrow M$$

Condition	Move
$a_1 = b_1$	Component removal
$a_1 = 2b_1$	Block removal
$b_1 < a_1 < 2b_1$	Rotation
$a_1 > 2b_1$	Pure
$a_1 < b_1$	Flip

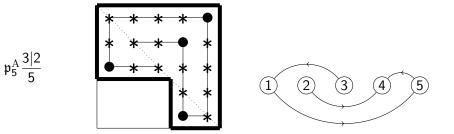
・ロト ・四ト ・ヨト ・ヨト

Detailed signature of $\mathfrak{p}_7^{\mathrm{A}} \frac{6|1}{2|3|2}$



▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへで

Type-A Frobenius functional, F_A

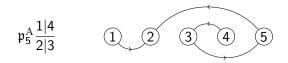


$$F_A = e^*_{1,5} + e^*_{2,4} + e^*_{3,1} + e^*_{5,4}$$
 is regular

æ

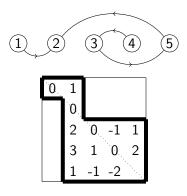
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Type-A principal element, \hat{F}_A



- Pick an endpoint of the path, say vertex 4
- Follow the path from 1 to 4, counting the arrows (measure)
- The measure is -2, this is the first diagonal entry of D.
- Repeat for each vertex: D = diag(-2, -3, -1, 0, -2)
- Normalize: $\hat{F}_A = D + 8/5 = \text{diag}(-2/5, -7/5, 3/5, 8/5, -2/5)$

Eigenvalues of $ad\hat{F}_A$



- Pick a pair of vertices (4,2)
- Measure is 3

• This is an eigenvalue: $\mathrm{ad}\hat{F}_{A}(e_{4,2}) = 3e_{4,2}$

Eigenvalues	-2	-1	0	1	2	3
Dimensions	1	2	4	4	2	1

October 14, 2016 12 / 31

Confirming a claim of Gerstenhaber and Giaquinto – and a bit more.

Theorem (C., Hyatt, Magnant (2016))

For a seaweed subalgebra of $\mathfrak{sl}(n)$, the spectrum of $\operatorname{ad} \hat{F}$ is an unbroken sequence of integers. Moreover, the multiplicities form a symmetric distribution.

Proof uses the Signature.

October 14, 2016

Symplectic Lie algebra

$$\mathfrak{sp}(2n) = \left\{ \begin{bmatrix} A & B \\ C & -\widehat{A} \end{bmatrix} : B = \widehat{B}, C = \widehat{C} \right\},$$

- A, B, and C are $n \times n$ matrices.
- \widehat{A} is the transpose of A with respect to the anitdiagonal.

Type-C seaweeds

$$\mathfrak{p}_n^{\mathrm{C}} \frac{a_1 | \cdots | a_m}{b_1 | \cdots | b_t}$$

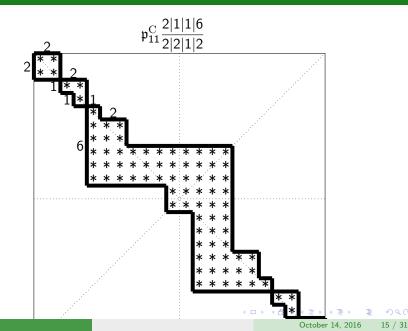
where the $a_1 | \cdots | a_m$ and $b_1 | \cdots | b_t$ are **partial compositions** of *n*, i.e.

$$\sum a_i \leq n \text{ and } \sum b_i \leq n.$$

イロト 不得 トイヨト イヨト 二日

October 14, 2016 14 / 31

Type-C (symplectic) seaweeds, cont...



Blocks

 $V_i = \{ vertices : a_1 + a_2 + \dots + a_{i-1} < vertex \ label < a_1 + a_2 + \dots + a_i + 1 \}$ Tail Let $r = n - \sum a_i$ and $T_n(a) = \{n - r + 1, n - r + 2, ..., n\}$ $T = (T_n(a) \cup T_n(b)) \setminus (T_n(a) \cap T_n(b))$ (4) (6) (7)(5)(3) 8 9 (11)• Top blocks: $V_1 = \{1, 2\}, V_2 = \{3\}, V_3 = \{4\}, V_4 = \{5, 6, 7, 8, 9, 10\}$

- Bottom blocks: $V_1 = \{1, 2\}, V_2 = \{3, 4\}, V_3 = \{4\}, V_4 = \{5, 0, 1, 0, 5\}, 10$
- Tail: $T = \{8, 9, 10\}$

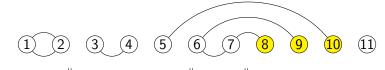
October 14, 2016 16 / 31

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Index computation for $\mathfrak{p}_{11}^{\mathrm{C}} \frac{2|1|}{2|2|1|2}$

Theorem (C., Hyatt., and Magnant (2016))

For a seaweed $\mathfrak{g} \subseteq \mathfrak{sp}(2n)$, ind $\mathfrak{g} = 2C + \tilde{P}$ \tilde{P} is number of paths with 0 or 2 edges in the tail.



component	# of tail vertices	cycle?	contribution to index
G[{1,2}]	0	yes	2
<i>G</i> [{3,4}]	0	no	1
$G[\{\{11\}]$	0	no	1
<i>G</i> [{6,7,8,9}]	2	no	1
$G[\{5, 10\}]$	1	no	0 <□><₽><₽><≥><≥>

October 14, 2016

Index Formulas

Theorem (C., Hyatt, and Magnant)
ind
$$p_n^C \frac{n}{a|b} = 0$$
 iff one of the following holds:
• $a + b = n - 1$ and $gcd(a + b, b + 1) = 1$
• $a + b = n - 2$ and $gcd(a + b, b + 2) = 1$
• $a + b = n - 3$ and $gcd(a + b, b + 3) = 2$ with n, a, and b all odd.

・ロト ・回ト ・ヨト ・

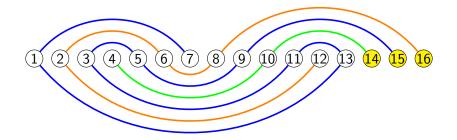
-

October 14, 2016

3

Corollary – Frobenius Type-C meanders are ...

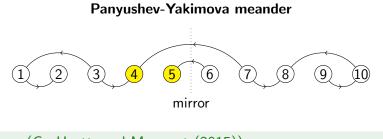
...a certain kind of forest...



3

• • • • • • • • • • • •

Type-C Frobenius functional, F_C



Theorem (C., Hyatt, and Magnant (2015))

$$F_C = \sum_{(i,j)} e^*_{i,j}$$
, such that $i \leq n$ or $j \leq n$, is Frobenius.

Example
$$F_C = e_{1,2}^* + e_{3,4}^* + e_{3,1}^* + e_{6,5}^* + e_{7,4}^*$$
 is Frobenius.

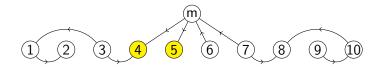
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

October 14, 2016

3

Type-C principal element, \hat{F}_C

Principal Graph



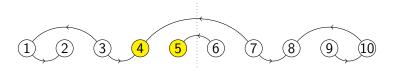
Edges incident with m have measure 1/2, all other edges have measure 1.

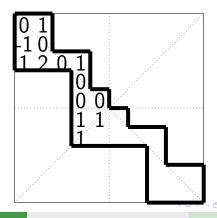
Measure from each vertex to m.

$$\hat{F}_{C} = \mathsf{diag}\left(-\frac{1}{2}, -\frac{3}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, \frac{3}{2}, \frac{1}{2}\right)$$

October 14, 2016

Eigenvalues of \hat{F}_C





October 14, 2016 22 / 31

Type-C unbroken spectrum result

Eigenvalues	-1	0	1	2
Dimensions	1	6	6	1

Type-C unbroken spectrum result

Eigenvalues	-1	0	1	2
Dimensions	1	6	6	1

Theorem (C., Hyatt., and Magnant (2016))

The spectrum of a principal element of Frobenius symplectic seaweed is an unbroken sequence of integers. Moreover the multiplicities form a symmetric sequence.

Proof uses two ingredients

October 14, 2016

- Type-A unbroken result
- Adaptation of the signature

Special orthogonal Lie algebra

$$\mathfrak{so}(2n+1) = \{A \in \mathfrak{gl}(n) \mid A = -\widehat{A}\},$$
$$\mathfrak{p}_n^{\mathrm{B}} \frac{\mathfrak{a}_1 | \cdots | \mathfrak{a}_m}{\mathfrak{b}_1 | \cdots | \mathfrak{b}_t}$$

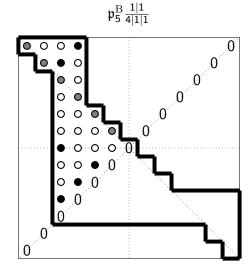
where the $a_1 | \cdots | a_m$ and $b_1 | \cdots | b_t$ are **partial compositions** of *n*, i.e.

$$\sum a_i \leq n \text{ and } \sum b_i \leq n.$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

October 14, 2016 24 / 31

Type-B seaweeds cont...



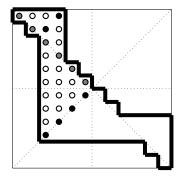
October 14, 2016 25 / 31

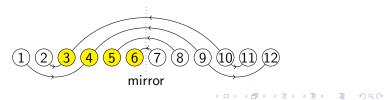
æ

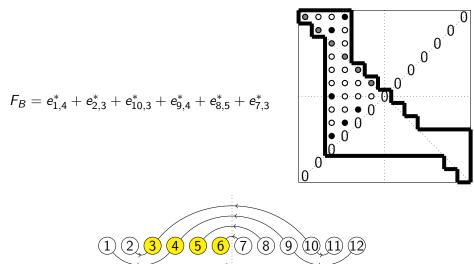
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

$$F_C = e_{1,4}^* + e_{2,3}^* + e_{10,3}^* + e_{9,4}^* + e_{8,5}^* + e_{7,6}^*$$

Read DIRECTLY from the meander



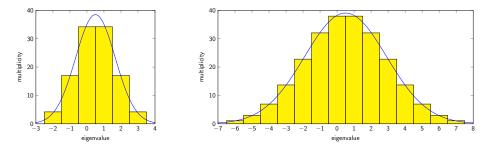




mirror

3

(It seems that) A stochasitic process is present



October 14, 2016

28 / 31

Distribution of eigenvalues of $\mathfrak{p}_{17}^A \frac{4|10|3}{6|4|7}$ (left) and $\mathfrak{p}_{17}^A \frac{4|13}{17}$ (right).

What seems to be true

- 1. Distribution is unimodular
- 2. Let $\lambda \in \mathbb{Z}^+$

 F_{λ} be a Frobenius seaweed with spectrum $\{1 - \lambda, ..., 0,, \lambda\}$ $d_i(F_{\lambda}) = \text{dim of the } \lambda\text{-eigenspace}$ $\{F_{\lambda}\}_{\lambda=1}^{\lambda=\infty}$ be a sequence of such Frobenius seaweeds

$$\{X_{\lambda}\}_{\lambda=1}^{\lambda=\infty}$$
 be a sequence of random variables
 $P(X_{\lambda} = i) = \frac{d_i(F_{\lambda})}{dim F_{\lambda}}$

 $X_{\lambda} \longrightarrow \text{Normal}$ (in distribution).

The "Stargate" poset

* 0 * * 0 * * * 0 0 * * 3 0 Rank $\mathfrak{g}(\mathcal{P},\mathbb{C})=3$ $\mathcal{P} = \{1, 2, 3, 4\}$ dim $\mathfrak{g}(\mathcal{P},\mathbb{C})=8$ $1.2 \prec 3 \prec 4$ $F = e_{1,4}^* + e_{2,4}^* + e_{2,3}^*$ $\hat{F} = \text{diag}\left(\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}\right)$ Spec ad $\hat{F} = \{0, 0, 0, 0, 1, 1, 1, 1\}$.

- 3

イロト 不得下 イヨト イヨト

$\mathfrak{g}(\mathcal{P},\mathbb{C})$ is NOT a seaweed!

The only seaweed subalgebra of $\mathfrak{sl}(4)$ with Rank 3 and dimension 8 is $\mathfrak{p}_4^{A\frac{2|2}{1|3}}$ It's spectrum is $\{-1,0,0,0,1,1,1,2\}$

Image: A match a ma

$\mathfrak{g}(\mathcal{P},\mathbb{C})$ is NOT a seaweed!

The only seaweed subalgebra of $\mathfrak{sl}(4)$ with Rank 3 and dimension 8 is $\mathfrak{p}_4^{A\frac{2|2}{1|3}}$ It's spectrum is $\{-1,0,0,0,1,1,1,2\}$

Question: What is the larger category?

< □ > < 同 > < 回 > < Ξ > < Ξ

October 14, 2016