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Objects and definitions

OBIJECTS
Frobenius seaweed subalgebras of simple Lie algebras

Simple
An =sl(n), B, =s0(2n+1), C, = sp(2n), D, = s0(2n)
Ee, E7, Eg, Fa, G2

Frobenius

BF[Xv)/] = F[Xay]
ind g = min dimker Bg.
Feg*
Seaweeds
g simple
p, p’ parabolic subalgebras with p +p' =g

pNyp’is a seaweed
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Type-A seaweeds

Special linear Lie algebra

sl(n) = {A € gl(n) |tr(A) = 0}

Type-A seaweed
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Index computation — Meanders
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Theorem (Dergachev and Kirillov, 2000)
For a seaweed g C sl(n), ind g=2C+ P —1 J
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Index formulas

Theorem (Elashvilli (1990), C., Magnant, and Giaquinto (2010))
alb

If n=a+ b with (a, b) =1, then - is Frobenius.

Theorem (C., Hyatt, Magnant, and Wang (2015))

Ifn=a+ b+ c with (a+ b,b+ ¢c) =1, then 3lble | is Frobenius.

Theorem (Karnauhova and Liebscher (2015))
If m > 4, then 1 homogeneous fi, f, € Z[xi, ... ,xm] such that

indM =gcd(fi(a1,---,am), 2(a1,...,am)).
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The signature of a meander

at|az| -+ |am
bilba|--- b M
| Condition | Move |
a1 = b Component removal
ai =2b; Block removal
by < a1 < 2b; Rotation
ai > 2b; Pure
a1 < b1 Flip
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Detailed signature of p7; 6T
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Type-A Frobenius functional, Fp

Q@ Q@ ® @ &

% * * kv
Fa=els+e,+e3;+e5,isregular
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Type-A principal element, F,

All4

iy @ @ GO B

Pick an endpoint of the path, say vertex 4

Follow the path from 1 to 4, counting the arrows (measure)
The measure is —2, this is the first diagonal entry of D.
Repeat for each vertex: D = diag(—2,—-3,—1,0,—2)
Normalize: F4 = D + 8/5 = diag(—2/5,—7/5,3/5,8/5, —2/5)
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Eigenvalues of adFa
QL @ @ @ ®
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e Pick a pair of vertices (4,2)

@ Measure is 3

@ This is an eigenvalue: adFa(es2) = 3es2
Eigenvalues | =2 | -1 0| 1|2
Dimensions | 1 | 2 |4(4|2]|1
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Type-A unbroken spectrum result

Confirming a claim of Gerstenhaber and Giaquinto
— and a bit more.

Theorem (C., Hyatt, Magnant (2016))

For a seaweed subalgebra of sl(n), the spectrum of adF is an unbroken

sequence of integers. Moreover, the multiplicities form a symmetric
distribution.

Proof uses the Signature.
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Type-C seaweeds

Symplectic Lie algebra

5p(2n):{[é\_ —BZ] ;Bzé,czf},

@ A, B, and C are n X n matrices.
@ A is the transpose of A with respect to the anitdiagonal.

Type-C seaweeds

o0 al-|am
" byl |b
where the aj|---|am and by|- - - |b; are partial compositions of n, i.e.

> ai<nand > b <n.
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...and the associated meander of

Blocks
V; = {vertices : ay +ax + -+ aj_1 < vertex label < aj+ap+---a;+1
Tail
Let r=n—>a  and To(@)={n—r+1n—r+2...,n}

T = (Tn(2) U Ta(b)) \ (Tn(2) N Ta(b))

@@@

o Top blocks: V4 = {1,2}, Vs = {3}, V5 = {4}, V4 = {5,6,7,8,9, 10}
e Bottom blocks: V; ={1,2}, Vo = {3,4}, V3 = {5}, Va={6,7}
e Tail: T ={8,9,10}
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: . 2[1]1]6
Index computation for p3;

2[21]2

Theorem (C., Hyatt., and Magnant (2016))

_ For a seaweed g C sp(2n), ind g = 2C + P
P is number of paths with 0 or 2 edges in the tail.

@O@@

component # of tail vertices || cycle? || contribution to index
G[{1,2}] 0 yes 2
G[{3,4}] 0 no 1
G[{{11}] 0 no 1
G[{6,7,8,9}] 2 no 1
G[{5,10}] 1 no 0

e TR



Index of symplectic seaweeds

Index Formulas

Theorem (C., Hyatt, and Magnant)
n
Al
@eat+b=n—1landged(a+bb+1)=1
@ at+b=n—-2andgecd(a+b,b+2)=1
@ a+b=n—3andgcd(a+ b,b+3) =2 with n,a, and b all odd.

ind p$— = 0 iff one of the following holds:

e TR



Corollary — Frobenius Type-C meanders are ...

...a certain kind of forest...
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Type-C Frobenius functional, F¢

Panyushev-Yakimova meander

mirror

Theorem (C., Hyatt, and Magnant (2015))

Fc = Z e?:j, such that i < n or j < n, is Frobenius.
(i)

Example
Fc=el,+ €54+ €51+ €5+ €74 is Frobenius.
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Type-C principal element, F¢

Principal Graph

(m)
Q@ 8 @ 66 © @ ® @ d

Edges incident with m have measure 1/2, all other edges have measure 1.

Measure from each vertex to m.

. 1 31 111
Fe=dag (7,22 2 2 27—
C |ag( 2’ 9'p' 9 piniy

N =
N W
N —
~_
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Type-C unbroken spectrum result

Eigenvalues | —1 | 0| 1
Dimensions | 1 [6 6|1
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Type-C unbroken spectrum result

Eigenvalues | —1 | 0| 1
Dimensions | 1 [6 6|1

Theorem (C., Hyatt., and Magnant (2016))

The spectrum of a principal element of Frobenius symplectic seaweed is an
unbroken sequence of integers. Moreover the multiplicities form a
symmetric sequence.

Proof uses two ingredients

@ Type-A unbroken result
@ Adaptation of the signature
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Type-B seaweeds

Special orthogonal Lie algebra

~

so(2n+1)={Acgl(n)| A= —A},

o8 at| - |am
n b1| e |bt
where the a;i|---|am and by|- - - |b; are partial compositions of n, i.e.

> ai<nand > b <n.
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Type-B seaweeds cont...
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Fc=el4s+e3+ejp3testesterg |

Read DIRECTLY from the meander
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(It seems that) A stochasitic process is present
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Distribution of eigenvalues of pﬁ 6[4]7

411
(left) and pﬁ# (right).
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More precisely...

What seems to be true

1. Distribution is unimodular
2. Let A e ZT

Fy be a Frobenius seaweed with spectrum {1 — A, ..., 0,.....; A}
di(Fy) = dim of the \-eigenspace
{FAJA=3° be a sequence of such Frobenius seaweeds

{X,JA=5° be a sequence of random variables
N _ di(F
PO =) = Gkl

X, — Normal (in distribution).
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Lie poset algebras

The “Stargate” poset

x 0 % %
@
0 % * %
(3) 0 0 % *
@ 0 0 0 %
P=1{1,2,3,4} Rank g(P,C) =3
1,2<3=<4 dim g(P,C) =38

F—diag (3,5, —4,—-})

Spec adF = {0,0,0,0,1,1,1,1}.
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g(P,C) is NOT a seaweed!

The only seaweed subalgebra of s[(4) with Rank 3 and dimension 8
is
A22
P2 13
It's spectrum is {—1,0,0,0,1,1,1,2}
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g(P,C) is NOT a seaweed!

The only seaweed subalgebra of s[(4) with Rank 3 and dimension 8
is
A22
P2 13
It's spectrum is {—1,0,0,0,1,1,1,2}

Question: What is the larger category?

e T TR



