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The Quantum Bit

Hilbert space is C2

states are points in P1(C) = P(C2) =)C2 \ {0})/scalars ≈ S2

standard basis for C2 is |0〉 =

[
1
0

]
, |1〉 =

[
0
1

]
we speak loosely and write the vector α |0〉+ β |1〉 but always mean
its equivalence class in P1
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The Bloch Sphere

S2 ←→ C2

(θ, φ)←→ cos
θ

2
|0〉+ e iφ sin

θ

2
|1〉

θ

|1〉

|ψ〉

|0〉

φ
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Many Quantum Bits

n-qubit Hilbert space is C2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
n factors

= (C2)⊗n ≈ C2n

states are points in projective space

write |011〉 for |0〉 ⊗ |1〉 ⊗ |1〉
standard (computational) basis vectors have form

|I 〉 = |i1i2 . . . in〉 , ik = 0, 1, 1 ≤ k ≤ n
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Entanglement

Entangled States

An n-qubit state is entangled if it is can not be written a product if
1-qubit states |ψ1〉 ⊗ |ψ2〉 ⊗ · · · ⊗ |ψn〉

Example: |00〉+ |11〉 6= (a |0〉+ b |1〉)⊗ (c |0〉+ d |1〉) for any a, b, c , d
Proof: Just look at

(a |0〉+ b |1〉)⊗ (c |0〉+ d |1〉) = ac |00〉+ ad |01〉+ bc |10〉+ bd |11〉 .

Terms don’t work out.
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Nonlocality

Spooky action at a distance

Alice has qubit 1 and Bob has qubit 2 of state |00〉+ |11〉 in labs
separated far apart. Each measures 0 or 1 with probability 1/2, but they
obtain the same outcome (both 0 or both 1) with probability 1.

Motivation to study multiqubit states

Multiqubit states encode data and can be processed to perform algorithms
and secure communication in ways that are (believed to be) not achievable
with classical processing of classical bits. Entanglement and nonlocality
play a role of essential resources for the speed up over classical algorithms.

Lyons (LVC) Discrete symmetries of hypergraph states 2016.04.01 8 / 39



Nonlocality

Spooky action at a distance

Alice has qubit 1 and Bob has qubit 2 of state |00〉+ |11〉 in labs
separated far apart. Each measures 0 or 1 with probability 1/2, but they
obtain the same outcome (both 0 or both 1) with probability 1.

Motivation to study multiqubit states

Multiqubit states encode data and can be processed to perform algorithms
and secure communication in ways that are (believed to be) not achievable
with classical processing of classical bits. Entanglement and nonlocality
play a role of essential resources for the speed up over classical algorithms.

Lyons (LVC) Discrete symmetries of hypergraph states 2016.04.01 8 / 39



Outline

1 Basics

2 Graphs and Graph States

3 Hypergraphs and Hypergraph States

4 Symmetry, Geometry, and Combinatorics

5 Summary and Looking Forward

Lyons (LVC) Discrete symmetries of hypergraph states 2016.04.01 9 / 39



Graph States: Ingredients

Graph

A graph G = (V ,E ) is a set V of vertices and a set E of (undirected,
non-loop) edges. That is e ∈ E is a 2-element subset of V .

The “plus” state

|+〉 = |0〉+ |1〉

Observation: |+〉⊗n =
∑

I |I 〉

The 2-qubit C operator (controlled-Z )

a |00〉+ b |01〉+ c |10〉+ d |11〉 → a |00〉+ b |01〉+ c |10〉−d |11〉
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Graph States: Construction

vertex←→ qubit in |+〉 state

edge←→ C operator on ends of the edge

Example:

Graph G = K3 State |ψG 〉 = |K3〉

3

1

2

|000〉+ |001〉+ |010〉+ |100〉
− (|011〉+ |101〉+ |110〉+ |111〉)
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Graph states, cont’d

Formally:

for edge e = {a, b}, write Ce for C operator on qubits a, b

for graph G = (V ,E ) with |V | = n, graph state is

|ψG 〉 =

(∏
e∈E

Ce

)
|+〉⊗n

Observations:

Operators Ce are well-defined on 2-element subsets of V and also
commute.

|ψG 〉 has the form
∑

I ± |I 〉
Facts:

Graph states are the resource for a measurement-based quantum
computation, capable of implementing any quantum algorithm.

Graph states play a key role in encoding and error correction theory
and implementation.
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Graph states, cont’d

One more big deal about graphs states. Graph states are stabilizer states,
that is, simultaneous eigenstates of n independent Pauli tensors.

Pauli matrices X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
Example: |K3〉 is stabilized by X ⊗ Z ⊗ Z ,Z ⊗ X ⊗ Z ,Z ⊗ Z ⊗ X

Philosophy: local symmetry is important and useful in studying
entanglement in general. Among all local operators, the Paulis play a
special role for encoding and error correction.
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Motivation and mission

study natural generalizations of graphs and graph states

look for algorithm and encoding applications

study local symmetries, especially Pauli
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Hypergraphs

Hypergraph

A hypergraph G = (V ,E ) is a set V of vertices and a set E of subsets of
V . Each e ∈ E is called a hyperedge.

4

1

2

3
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Hypergraph states

Vertices are plus states, hyperedges are generalized Ce operators

4

1

2

3

|ψ〉 = C1,2C2,3,4 |+〉⊗4

= |0000〉+ |0001〉+ |0010〉+ |0011〉+ |0100〉
+ |0101〉+ |0110〉+ |1000〉+ |1001〉+ |1010〉+ |1011〉+ |1111〉
− |0111〉 − |1100〉 − |1101〉 − |1110〉
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Hypergraph states, cont’d

Formally:

for hyperedge e, write Ce for generalized C operator on qubits in e

for hypergraph G = (V ,E ) with |V | = n, hypergraph state is

|ψG 〉 =

(∏
e∈E

Ce

)
|+〉⊗n

Observations:

Operators Ce are well-defined on subsets of V and also commute.

|ψG 〉 has the form
∑

I ± |I 〉
Facts:

If you have a black box that can decide whether an input graph state
is a product state, you can solve 3-SAT
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Local symmetry for hypergraph states

Question: what hypergraphs G admit local Pauli symmetry? I.e., solve

αM1 ⊗M2 ⊗ · · · ⊗Mn |ψG 〉 = |ψG 〉

Mk = I ,X ,Y ,Z for 1 ≤ k ≤ n, α = ±1,±i

Special case: solve
±X⊗n |ψG 〉 = |ψG 〉

Even specialer case: assume G is permutation invariant
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Permutation group action on states

transposition τ = (12) permutes qubits 1,2

a |010〉+ b |110〉 → a |100〉+ b |110〉

state a |010〉+ b |110〉 is not permutation invariant

state |000〉+ c(|001〉+ |010〉+ |100〉) + b |111〉 is permutation invariant
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Permutation invariant hypergraph states

Easy to see: the only permutation invariant graph states are |Kn〉

Easy to see: if a hypergraph state is permutation invariant, and if there’s a
hyperedge of size m, there the hypergraph must have all possible
hyperedges of size m

Example:
∣∣K 3

4

〉
, “tetrahedron state”

We write
∣∣Km1,...,mk

n

〉
to denote the n-qubit hypergraph state that is

complete in levels m1, . . . ,mk (i.e., has all possible hyperedges of the sizes
listed)

Observation: expansion in standard basis must obey constant coefficients
for a given Hamming weight

|ψG 〉 =
n∑

w=0

(−1)ew
∑

I : wt(I )=w

|I 〉
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Permutation invariant hypergraph states, cont’d

Question: how to calculate ew?

Thought bubble: (−1)? |0 · · · 0 | 1 · · · 1〉 (weight w is the number of 1s)

Answer: ew =
(w
m

)
This leads us to look at look at “

( ·
m

)
stripe” in Pascal’s triangle mod 2

Example(s): read off a list of weight class sign coefficients for one or more
|Km

n 〉 states
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Pascal’s Triangle mod 2

(image from mathforums.org)
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X⊗n symmetry for perm. inv. hyp. states

Pauli X swaps 0↔ 1, so X⊗n take a weight w basis vector to a weight
n − w vector with all bits flipped, thus we have X⊗n symmetry if and only
if

ew = en−w (mod 2)(
w

m

)
=

(
w

n −m

)
(mod 2)

This sends us looking for palindrome in
( ·
m

)
stripes (find some examples)
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X⊗n symmetry, cont’d

“Short stripe condition”, discovered independently, searching for
nonlocality examples

−X⊗n symmetry is equivalent to antipalindrome condition on long strips,
also has short stripe condition, (see examples)

ew = en−w + 1 (mod 2)(
w

m

)
=

(
w

n −m

)
+ 1 (mod 2)
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Pascal’s Triangle mod 2

(image from mathforums.org)
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X⊗n symmetry, cont’d

For multiple completeness levels m1,m2, . . . ,mk , we have

ew =

(
w

m1

)
+

(
w

m2

)
+ · · ·+

(
w

mk

)
(mod 2)

Summer 2015 work of students, finding (via search) and proving some
families

Example:
∣∣∣K 2,4

11+8k

〉
has −X⊗n symmetry for k ≥ 0
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Amusing combinatorics

Two vectors that specify a permutation invariant hypergraph∣∣Km1,m2,...,mk
n

〉
e : |ψG 〉 =

∑
I

(−1)ewt(I ) |I 〉

g : gw =

{
1 if mj = 1 for some j
0 otherwise

Question: Nice converter e ↔ g?

Cool answer: Let A =
((i

j

)
(mod 2)

)
1≤i ,j≤n

(upper right “Pascal’s

parallelogram”).

We have Ae = g , Ag = e. Nice, huh?
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Pascal’s Triangle mod 2

(image from mathforums.org)
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Amusing combinatorics, cont’d

Par(i)ty trick: when is
(n
m

)
even, odd? More generally, when does p |

(n
m

)
?

Answer: Kümmer (1852), Lucas (1878).

1 Expand n,m in base p, with pi coefficient digit ni ,mi , resp.

2 p |
(n
m

)
if and only if ∃i mi > ni

3 For p = 2,
(n
m

)
is even if and only if there is a position where the base

2 expansion of m has a 1 and the base 2 expansion of n has a 0.

Examples: see Pascal’s triangle
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Pascal’s Triangle mod 2

(image from mathforums.org)
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Amusing combinatorics, cont’d

Question for audience: when is a Pascal row perpendicular to a vector of
±1 entries? (Besides the one we know, alternating ±1.) Example in row
14.
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Bloch sphere picture

One way to make a permutation invariant state:

1. choose n 1-qubit states |ψ1〉 , . . . , |ψn〉

2. symmetrize their product

|ψ〉 =
∑
π∈Sn

∣∣ψπ(1)〉⊗ · · · ⊗ ∣∣ψπ(n)〉
Amazing fact: All permutation invariant states can be made this way.

Consequence: There is a one-to-one correspondence between n-qubit
permutation invariant states and collections of n points on the Bloch
sphere.
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Bloch sphere picture: it gets better

Local equivalence: Suppose permutation invariant states |ψ〉 , |ψ′〉 are
locally equivalent. Then there is a 2× 2 unitary U such that
|ψ′〉 = U⊗n |ψ〉.

A 2× 2 unitary U acts on the Bloch sphere by rotation. So |ψ〉 , |ψ′〉 are
locally equivalent if and only if their configurations of Bloch points can be
rotated one to the other.
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Bloch sphere picture, cont’d

Example:
∣∣K 3

4

〉

Bloch configuration are the 4 points at the corners of a rectangle on a
great circle, symmetry group is Z2 × Z2. Axis of rotations are Y ,
αX + βZ , and −βX + αZ .

Conjecture(s)/Question(s): Do all discrete symmetries of permutation
invariant hypergraph states have order 2? Are there any axes of symmetry
other than X , Y , and these two exotic X ,Z -plane axes for

∣∣K 3
4

〉
?
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We have found relations between discrete symmetry for perm. inv.
hypergraph states with properties of Pascal’s triangle mod 2

We have Majorana pictures

We have lots of questions about discrete symmetries

We would love to develop a killer app for hypergraph states: code(s) with
good properties, an algorithm that can be done with hypergraphs but not
graphs
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Thank you!

Visit us at our website
http://quantum.lvc.edu/mathphys

Lyons (LVC) Discrete symmetries of hypergraph states 2016.04.01 39 / 39


	Basics
	Graphs and Graph States
	Hypergraphs and Hypergraph States
	Symmetry, Geometry, and Combinatorics
	Summary and Looking Forward

