Detecting Linkage in an *n*-Component Brunnian Link (work in progress)

Ron Umble, Barbara Nimershiem, and Merv Fansler Millersville U and Franklin & Marshall College

Tetrahedral Geometry/Topology Seminar

December 4, 2015

Computationally detect the linkage in an n-component Brunnian link

Let X be a connected network, surface, or solid embedded in S^3

• discrete points (vertices or 0-cells)

- discrete points (vertices or 0-cells)
- closed intervals (edges or 1-cells)

- discrete points (vertices or 0-cells)
- closed intervals (edges or 1-cells)
- closed disks (faces or 2-cells)

- discrete points (vertices or 0-cells)
- closed intervals (edges or 1-cells)
- closed disks (faces or 2-cells)
- closed balls (solids or 3-cells)

glued together so that the

- discrete points (vertices or 0-cells)
- closed intervals (edges or 1-cells)
- closed disks (faces or 2-cells)
- closed balls (solids or 3-cells)

glued together so that the

• non-empty boundary of a k-cell is a union of (k-1)-cells

- discrete points (vertices or 0-cells)
- closed intervals (edges or 1-cells)
- closed disks (faces or 2-cells)
- closed balls (solids or 3-cells)

glued together so that the

- non-empty boundary of a k-cell is a union of (k-1)-cells
- non-empty intersection of cells is a cell

- discrete points (vertices or 0-cells)
- closed intervals (edges or 1-cells)
- closed disks (faces or 2-cells)
- closed balls (solids or 3-cells)

glued together so that the

- non-empty boundary of a k-cell is a union of (k-1)-cells
- non-empty intersection of cells is a cell
- union of all cells is X

 $S^2=D^2/\partial D^2$ (Grandma's draw string bag)

- Vertex: $\{v\}$
- Edges: \varnothing
- Face: $\{S^2\}$

Example: Torus

 $T=S^1 \times S^1$

Product cells: $\{v,a\} \times \{v,b\}$

• Vertex:
$$\{v := v \times v\}$$

• Edges:
$$\{ a := a imes v, \ b := v imes b \}$$

• Face:
$$\{ T := a imes b \}$$

< 🗗 🕨

э

P = T/b

- Vertex: $\{v\}$
- Edge: {*a*}
- Face: $\{S\}$

ም.

Let UN be the complement of disjoint tubular neighborhoods U_i of **two** unlinked unknots in S^3

∂ (U₁ ∪ U₂) is the wedge of two pinched spheres t_i sharing a single vertex v and two edges a and b

Cellular Structure of UN

- $\partial \left(\textit{UN} \right)$ is wedged with the equatorial 2-sphere $s \subset S^3$
- p = upper hemispherical 3-ball
- q = lower hemispherical 3-ball $\smallsetminus (U_1 \cup U_2)$
- p and q are attached along s
- $UN = p \cup q$

- Vertices: $\{v\}$
- Edges: $\{a, b\}$
- Faces: $\{s, t_1, t_2\}$
- Solids: $\{p, q\}$

Example: Link Complement of the Hopf Link

Let LN be the complement of disjoint tubular neighborhoods U_i of the **Hopf Link** in S^3

• $\partial (U_1 \cup U_2)$ is the union of two linked tori t'_i sharing a single vertex v and two edges a and b

Cellular Structure of LN

- $\partial \left(LN
 ight)$ is wedged with the equatorial 2-sphere $s \subset S^3$
- p = upper hemispherical 3-ball
- q' = lower hemispherical 3-ball $\smallsetminus (U_1 \cup U_2)$
- p and q' are attached along s
- $LN = p \cup q'$

- Vertex: $\{v\}$
- Edges: {*a*, *b*}
- Faces: {s, t'₁, t'₂}
 Solids: {p, q'}

• X can be continuously deformed into Y

- X can be continuously deformed into Y
- \exists a bijective bicontinuous $h: X \to Y$, called a **homeomorphism**

- X can be continuously deformed into Y
- \exists a bijective bicontinuous $h: X \to Y$, called a homeomorphism
- A square and a circle are homeomorphic

- X can be continuously deformed into Y
- \exists a bijective bicontinuous $h: X \to Y$, called a **homeomorphism**
- A square and a circle are homeomorphic

$$\stackrel{h}{\longrightarrow} \bigcirc$$

• The boundaries of a doughnut and coffee cup are homeomorphic

• UN and LN are not homeomorphic because...

- UN and LN are not homeomorphic because...
- Shrinking the tubular neighborhood of one component to point

- UN and LN are not homeomorphic because...
- Shrinking the tubular neighborhood of one component to point
 - shrinks $\partial(UN)$ to a pinched sphere

- UN and LN are not homeomorphic because...
- Shrinking the tubular neighborhood of one component to point
 - shrinks $\partial(UN)$ to a pinched sphere
 - shrinks $\partial(LN)$ to a 2-sphere

- UN and LN are not homeomorphic because...
- Shrinking the tubular neighborhood of one component to point
 - shrinks $\partial(UN)$ to a pinched sphere
 - shrinks $\partial(LN)$ to a 2-sphere
- How do we can detect this computationally?

• Geometric diagonal $\Delta_X : X \to X \times X$ is defined $x \mapsto (x, x)$

- Geometric diagonal $\Delta_X : X \to X \times X$ is defined $x \mapsto (x, x)$
- A homeomorphism $h: X \to Y$ respects diagonals

 $\Delta_Y h = (h \times h) \, \Delta_X$

- Geometric diagonal $\Delta_X : X \to X \times X$ is defined $x \mapsto (x, x)$
- A homeomorphism $h: X \to Y$ respects diagonals

$$\Delta_Y h = (h \times h) \Delta_X$$

$$h: UN \rightarrow LN$$

- Geometric diagonal $\Delta_X : X \to X \times X$ is defined $x \mapsto (x, x)$
- A homeomorphism $h: X \rightarrow Y$ respects diagonals

$$\Delta_Y h = (h \times h) \Delta_X$$

$$h: UN \rightarrow LN$$

Strategy:

- Geometric diagonal $\Delta_X : X \to X \times X$ is defined $x \mapsto (x, x)$
- A homeomorphism $h: X \to Y$ respects diagonals

$$\Delta_{\mathbf{Y}} \mathbf{h} = (\mathbf{h} \times \mathbf{h}) \, \Delta_{\mathbf{X}}$$

$$h: UN \rightarrow LN$$

• Strategy:

• Assume there is a homeomorphism h

- Geometric diagonal $\Delta_X : X \to X \times X$ is defined $x \mapsto (x, x)$
- A homeomorphism $h: X \to Y$ respects diagonals

$$\Delta_{\mathbf{Y}} \mathbf{h} = (\mathbf{h} \times \mathbf{h}) \, \Delta_{\mathbf{X}}$$

$$h: UN \rightarrow LN$$

• Strategy:

- Assume there is a homeomorphism h
- Show that *h* fails to respect diagonals

• **Problem:** Im Δ_X is typically *not* a subcomplex of $X \times X$

- **Problem:** Im Δ_X is typically *not* a subcomplex of $X \times X$
- **Example:** Im Δ_{I} is not a subcomplex of $I \times I$:

• A map $\Delta: X \to X \times X$ is a **diagonal approximation** if

- A map $\Delta: X \to X \times X$ is a **diagonal approximation** if
 - Δ is homotopic to Δ_X
- A map $\Delta: X \to X \times X$ is a **diagonal approximation** if
 - Δ is homotopic to Δ_X
 - $\Delta(e^n)$ is a subcomplex of $e^n \times e^n$ for every *n*-cell $e^n \subseteq X$

• A map $\Delta: X \to X \times X$ is a **diagonal approximation** if

- Δ is homotopic to Δ_X
- $\Delta(e^n)$ is a subcomplex of $e^n \times e^n$ for every *n*-cell $e^n \subseteq X$
- Geometric boundary $\partial: X \to X$ is a coderivation of Δ

$$\Delta \partial = (\partial \times \mathrm{Id} + \mathrm{Id} \times \partial) \Delta$$

• A map $\Delta: X \to X \times X$ is a **diagonal approximation** if

- Δ is homotopic to Δ_X
- $\Delta(e^n)$ is a subcomplex of $e^n \times e^n$ for every *n*-cell $e^n \subseteq X$
- Geometric boundary $\partial: X \to X$ is a coderivation of Δ

$$\Delta \partial = (\partial \times \mathrm{Id} + \mathrm{Id} \times \partial) \Delta$$

• Cellular Approximation Theorem

There is a diagonal approximation $\Delta: X \to X \times X$

• Cellular structure: $\Delta(e^n) \subseteq e^n \times e^n$

- Cellular structure: $\Delta(e^n) \subseteq e^n \times e^n$
- Dimension: dim $\Delta(e^n) = \dim e^n$

- Cellular structure: $\Delta(e^n) \subseteq e^n \times e^n$
- Dimension: $\dim \Delta(e^n) = \dim e^n$
- Cartesian products: $\Delta \left(X \times Y \right) = \Delta \left(X \right) \times \Delta \left(Y \right)$

- Cellular structure: $\Delta(e^n) \subseteq e^n \times e^n$
- Dimension: dim $\Delta(e^n) = \dim e^n$
- Cartesian products: $\Delta (X \times Y) = \Delta (X) \times \Delta (Y)$
- Wedge products: $\Delta(X \lor Y) = \Delta(X) \lor \Delta(Y)$

Dan Kravatz's Diagonal Approximation on a Polygon

• Given *n*-gon *G*, arbitrarily choose vertices v and v' (possibly equal)

Dan Kravatz's Diagonal Approximation on a Polygon

- Given *n*-gon *G*, arbitrarily choose vertices v and v' (possibly equal)
- Edges {e₁,..., e_k} and {e_{k+1},..., e_n} form paths from v to v' (one path {e₁,..., e_n} if v = v')

Dan Kravatz's Diagonal Approximation on a Polygon

- Given *n*-gon *G*, arbitrarily choose vertices v and v' (possibly equal)
- Edges {e₁,..., e_k} and {e_{k+1},..., e_n} form paths from v to v'
 (one path {e₁,..., e_n} if v = v')
- Theorem (Kravatz 2008): There is a diagonal approximation

$$\Delta G = \mathbf{v} \times G + G \times \mathbf{v}'$$

+ $\sum_{i=2}^{k} (\mathbf{e}_1 + \dots + \mathbf{e}_{i-1}) \times \mathbf{e}_i$
+ $\sum_{j=k+2}^{n} (\mathbf{e}_{k+1} + \dots + \mathbf{e}_{j-1}) \times \mathbf{e}_j$

Example

Think of the **pinched sphere** $t_1 \subset \partial(UN)$ as a 2-gon with vertices identified first, then edges identified

$$\Delta t_1 = \mathbf{v} imes t_1 + t_1 imes \mathbf{v}$$

 $\bullet~\Delta$ descends to quotients when edge-paths are consistent with identifications

Tetrahedral Geometry/Topology Seminar

Think of the **torus** $t'_1 \subset \partial(LN)$ as a square with horizontal edges *a* identified and vertical edges *b* identified

• C(X) denotes the \mathbb{Z}_2 -vector space with basis {cells of X}

- C(X) denotes the \mathbb{Z}_2 -vector space with basis {cells of X}
 - Elements are formal sums called cellular chains of X

- C(X) denotes the \mathbb{Z}_2 -vector space with basis {cells of X}
 - Elements are formal sums called cellular chains of X
- Examples:

- C(X) denotes the \mathbb{Z}_2 -vector space with basis {cells of X}
 - Elements are formal sums called cellular chains of X
- Examples:
 - C(UN) has basis {v, a, b, s, t_1 , t_2 , p, q}

- C(X) denotes the \mathbb{Z}_2 -vector space with basis {cells of X}
 - Elements are formal sums called **cellular chains of** X
- Examples:
 - C(UN) has basis {v, a, b, s, t_1 , t_2 , p, q}
 - C(LN) has basis $\{v, a, b, s, t'_1, t'_2, p, q'\}$

- C(X) denotes the \mathbb{Z}_2 -vector space with basis {cells of X}
 - Elements are formal sums called **cellular chains of** X
- Examples:
 - C(UN) has basis {v, a, b, s, t_1 , t_2 , p, q}
 - C(LN) has basis $\{v, a, b, s, t'_1, t'_2, p, q'\}$
 - Note that $C(UN) \approx C(LN)$

• Geometric boundary of an *n*-cell e^n is S^{n-1}

• Geometric boundary of an *n*-cell e^n is S^{n-1}

•
$$\partial \mathbf{v} = \emptyset$$
; $\partial \mathbf{e} = S^0$; $\partial \mathbf{f} = S^1$; $\partial \mathbf{s} = S^2$

• Geometric boundary of an *n*-cell e^n is S^{n-1}

•
$$\partial \mathbf{v} = \emptyset$$
; $\partial \mathbf{e} = S^0$; $\partial \mathbf{f} = S^1$; $\partial \mathbf{s} = S^2$

•
$$\partial(\partial e^n) = \partial S^{n-1} = \emptyset$$

• Geometric boundary of an *n*-cell e^n is S^{n-1}

•
$$\partial \mathbf{v} = \emptyset$$
; $\partial \mathbf{e} = S^0$; $\partial \mathbf{f} = S^1$; $\partial \mathbf{s} = S^2$

•
$$\partial (\partial e^n) = \partial S^{n-1} = \emptyset$$

• Boundary operator $\partial : C(X) \rightarrow C(X)$

•
$$\partial \mathbf{v} = \emptyset$$
; $\partial \mathbf{e} = S^0$; $\partial \mathbf{f} = S^1$; $\partial \mathbf{s} = S^2$

•
$$\partial(\partial e^n) = \partial S^{n-1} = \emptyset$$

- Boundary operator $\partial : C(X) \rightarrow C(X)$
 - Induced by the geometric boundary

•
$$\partial \mathbf{v} = \emptyset$$
; $\partial \mathbf{e} = S^0$; $\partial \mathbf{f} = S^1$; $\partial \mathbf{s} = S^2$

•
$$\partial(\partial e^n) = \partial S^{n-1} = \emptyset$$

- Boundary operator $\partial : C(X) \rightarrow C(X)$
 - Induced by the geometric boundary
 - Zero on vertices

•
$$\partial \mathbf{v} = \emptyset$$
; $\partial \mathbf{e} = S^0$; $\partial \mathbf{f} = S^1$; $\partial \mathbf{s} = S^2$

•
$$\partial (\partial e^n) = \partial S^{n-1} = \emptyset$$

- Boundary operator $\partial : C(X) \rightarrow C(X)$
 - Induced by the geometric boundary
 - Zero on vertices
 - Linear on chains

•
$$\partial \mathbf{v} = \emptyset$$
; $\partial \mathbf{e} = S^0$; $\partial \mathbf{f} = S^1$; $\partial \mathbf{s} = S^2$

•
$$\partial (\partial e^n) = \partial S^{n-1} = \emptyset$$

- Boundary operator $\partial : C(X) \rightarrow C(X)$
 - Induced by the geometric boundary
 - Zero on vertices
 - Linear on chains
 - A derivation of the Cartesian product

$$\partial \left(\mathbf{a} imes \mathbf{b}
ight) = \partial \mathbf{a} imes \mathbf{b} + \mathbf{a} imes \partial \mathbf{b}$$

Examples

• ∂ : $C(UN) \rightarrow C(UN)$ is defined

$$\partial v = \partial a = \partial b = \partial s = \partial t_1 = \partial t_2 = 0$$

 $\partial p = s$
 $\partial q = s + t_1 + t_2$

∃ ► < ∃</p>

æ

Examples

• ∂ : $C(UN) \rightarrow C(UN)$ is defined

$$\partial v = \partial a = \partial b = \partial s = \partial t_1 = \partial t_2 = 0$$

 $\partial p = s$
 $\partial q = s + t_1 + t_2$

• ∂ : $C(LN) \rightarrow C(LN)$ is defined

$$\partial v = \partial a = \partial b = \partial s = \partial t'_1 = \partial t'_2 = 0$$

 $\partial p = s$
 $\partial q' = s + t'_1 + t'_2$

Tetrahedral Geometry/Topology Seminar

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

•
$$\partial \circ \partial = 0$$
 implies $\operatorname{Im} \partial \subseteq \ker \partial$

< 🗗 🕨

æ

- $\partial \circ \partial = 0$ implies $\operatorname{Im} \partial \subseteq \ker \partial$
- $H(X) := \ker \partial / \operatorname{Im} \partial$ is the **cellular homology of** X

- $\partial \circ \partial = 0$ implies $\operatorname{Im} \partial \subseteq \ker \partial$
- $H(X) := \ker \partial / \operatorname{Im} \partial$ is the **cellular homology of** X
- Elements of H(X) are cosets $[c] := c + \operatorname{Im} \partial$

- $\partial \circ \partial = 0$ implies $\operatorname{Im} \partial \subseteq \ker \partial$
- $H(X) := \ker \partial / \operatorname{Im} \partial$ is the **cellular homology of** X
- Elements of $H\left(X
 ight)$ are cosets $\left[c
 ight]:=c+\mathrm{Im}\,\partial$
- Examples

- $\partial \circ \partial = 0$ implies $\operatorname{Im} \partial \subseteq \ker \partial$
- $H(X) := \ker \partial / \operatorname{Im} \partial$ is the **cellular homology of** X
- Elements of $H\left(X
 ight)$ are cosets $\left[c
 ight]:=c+\mathrm{Im}\,\partial$
- Examples
 - $H(UN) = \{[v], [a], [b], [t_1] = [t_2]\}$

- $\partial \circ \partial = 0$ implies $\operatorname{Im} \partial \subseteq \ker \partial$
- $H(X) := \ker \partial / \operatorname{Im} \partial$ is the **cellular homology of** X
- Elements of $H\left(X
 ight)$ are cosets $\left[c
 ight]:=c+\mathrm{Im}\,\partial$
- Examples
 - $H(UN) = \{[v], [a], [b], [t_1] = [t_2]\}$
 - $H(LN) = \{[v], [a], [b], [t_1'] = [t_2']\}$

- $\partial \circ \partial = 0$ implies $\operatorname{Im} \partial \subseteq \ker \partial$
- $H(X) := \ker \partial / \operatorname{Im} \partial$ is the **cellular homology of** X
- Elements of $H\left(X
 ight)$ are cosets $\left[c
 ight]:=c+\operatorname{Im}\partial$
- Examples
 - $H(UN) = \{[v], [a], [b], [t_1] = [t_2]\}$
 - $H(LN) = \{[v], [a], [b], [t'_1] = [t'_2]\}$
 - Note that $H(UN) \approx H(LN)$

- $\partial \circ \partial = 0$ implies Im $\partial \subseteq \ker \partial$
- $H(X) := \ker \partial / \operatorname{Im} \partial$ is the **cellular homology of** X
- Elements of $H\left(X
 ight)$ are cosets $\left[c
 ight]:=c+\operatorname{Im}\partial$
- Examples
 - $H(UN) = \{[v], [a], [b], [t_1] = [t_2]\}$
 - $H(LN) = \{[v], [a], [b], [t'_1] = [t'_2]\}$
 - Note that $H(UN) \approx H(LN)$
- How do diagonal approximations on UN and LN lift to homology?
• Homotopic maps of spaces induce the same map on their homologies

< 一型

э

- Homotopic maps of spaces induce the same map on their homologies
- Every diagonal approximation $\Delta: X \to X imes X$ induces the same map

$$\Delta_{2}:H\left(X\right)\to H\left(X\times X\right)$$

- Homotopic maps of spaces induce the same map on their homologies
- Every diagonal approximation $\Delta: X \rightarrow X \times X$ induces the same map

$$\Delta_{2}:H\left(X\right)\to H\left(X\times X\right)$$

• A homeomorphism $h: X \to Y$ induces maps

$$h_{*}:H\left(X
ight)
ightarrow H\left(Y
ight)$$
 and $\left(h imes h
ight)_{*}:H\left(X imes X
ight)
ightarrow H\left(Y imes Y
ight)$

such that $\Delta_2 h_* = \left(h imes h
ight)_* \Delta_2$

- Homotopic maps of spaces induce the same map on their homologies
- Every diagonal approximation $\Delta: X \to X imes X$ induces the same map

$$\Delta_{2}:H\left(X\right)\to H\left(X\times X\right)$$

• A homeomorphism $h: X \to Y$ induces maps

$$h_{*}:H\left(X
ight)
ightarrow H\left(Y
ight)$$
 and $\left(h imes h
ight)_{*}:H\left(X imes X
ight)
ightarrow H\left(Y imes Y
ight)$

such that $\Delta_2 h_* = \left(h imes h
ight)_* \Delta_2$

• If $h: UN \rightarrow LN$ is a homeomorphism, inequality is a contradiction

If vector space A has basis {a₁,..., a_k}, the tensor product vector space A ⊗ A has basis {a_i ⊗ a_j}_{1 ≤ i, j ≤ k}

If vector space A has basis {a₁,..., a_k}, the tensor product vector space A ⊗ A has basis {a_i ⊗ a_j}_{1 ≤ i,j ≤ k}

•
$$C(X \times X) \approx C(X) \otimes C(X)$$
 via $e \times e' \mapsto e \otimes e'$

If vector space A has basis {a₁,..., a_k}, the tensor product vector space A ⊗ A has basis {a_i ⊗ a_j}_{1≤i,j≤k}

•
$$C(X \times X) \approx C(X) \otimes C(X)$$
 via $e \times e' \mapsto e \otimes e'$

• The boundary map

$$\partial \times \mathrm{Id} + \mathrm{Id} \times \partial : X \times X \to X \times X$$

induces the boundary operator

$$\partial \otimes \mathrm{Id} + \mathrm{Id} \otimes \partial : C(X) \otimes C(X) \to C(X) \otimes C(X)$$

If vector space A has basis {a₁,..., a_k}, the tensor product vector space A ⊗ A has basis {a_i ⊗ a_j}_{1≤i,j≤k}

•
$$C(X \times X) \approx C(X) \otimes C(X)$$
 via $e \times e' \mapsto e \otimes e'$

• The boundary map

$$\partial \times \mathrm{Id} + \mathrm{Id} \times \partial : X \times X \to X \times X$$

induces the boundary operator

$$\partial \otimes \mathrm{Id} + \mathrm{Id} \otimes \partial : C(X) \otimes C(X) \to C(X) \otimes C(X)$$

• Since \mathbb{Z}_2 is a field, torsion vanishes and

$$H(X \times X) \approx H(X) \otimes H(X)$$

Induced Diagonal on H(X)

• A diagonal approximation $\Delta: X \to X \times X$ induces a **coproduct**

$$\Delta_{2}:H\left(X\right)\rightarrow H\left(X\right)\otimes H\left(X\right)$$

defined by

$$\Delta_2\left[oldsymbol{c}
ight] := \left[\Delta oldsymbol{c}
ight]$$

Induced Diagonal on H(X)

• A diagonal approximation $\Delta: X \to X \times X$ induces a **coproduct**

$$\Delta_{2}:H\left(X\right)\to H\left(X\right)\otimes H\left(X\right)$$

defined by

$$\Delta_2\left[c
ight] := \left[\Delta c
ight]$$

• A class [c] of positive dimension is **primitive** if

$$\Delta_2\left[m{c}
ight] = \left[m{v}
ight] \otimes \left[m{c}
ight] + \left[m{c}
ight] \otimes \left[m{v}
ight]$$

Induced Diagonal on H(X)

• A diagonal approximation $\Delta: X \to X \times X$ induces a **coproduct**

$$\Delta_{2}:H\left(X\right)\rightarrow H\left(X\right)\otimes H\left(X\right)$$

defined by

$$\Delta_2\left[oldsymbol{c}
ight] := \left[\Delta oldsymbol{c}
ight]$$

• A class [c] of positive dimension is **primitive** if

$$\Delta_2\left[m{c}
ight] = \left[m{v}
ight] \otimes \left[m{c}
ight] + \left[m{c}
ight] \otimes \left[m{v}
ight]$$

Examples

 $\Delta_2 \left[t_1
ight] = \left[\Delta t_1
ight] = \left[oldsymbol{v}
ight] \otimes \left[t_1
ight] + \left[t_1
ight] \otimes \left[oldsymbol{v}
ight]$

 $\Delta_{2}\left[t_{1}'\right] = \left[\Delta t_{1}'\right] = \left[\nu\right] \otimes \left[t_{1}'\right] + \left[t_{1}'\right] \otimes \left[\nu\right] + \left[a\right] \otimes \left[b\right] + \left[b\right] \otimes \left[a\right]$

Non-Primitivity Detects Linkage

• If $h: UN \to LN$ is a homeomorphism, $(h_* \otimes h_*) \Delta_2 = \Delta_2 h_*$

Non-Primitivity Detects Linkage

- If $h: UN \to LN$ is a homeomorphism, $(h_* \otimes h_*) \Delta_2 = \Delta_2 h_*$
- But $h_*[t_1] = [t'_1]$ implies

 $(h_* \otimes h_*) \Delta_2 [t_1] = (h_* \otimes h_*) ([v] \otimes [t_1] + [t_1] \otimes [v])$

 $= [\mathbf{v}] \otimes ig[t_1'ig] + ig[t_1'ig] \otimes [\mathbf{v}]$

 $\neq [v] \otimes \left[t_1'\right] + \left[t_1'\right] \otimes [v] + [a] \otimes [b] + [b] \otimes [a]$

$$=\Delta_{2}\left[t_{1}^{\prime}
ight]=\Delta_{2}h_{st}\left[t_{1}
ight]$$
 ,

which is a contradiction

Non-Primitivity Detects Linkage

- If $h: UN \to LN$ is a homeomorphism, $(h_* \otimes h_*) \Delta_2 = \Delta_2 h_*$
- But $h_*[t_1] = [t'_1]$ implies

 $(h_* \otimes h_*) \Delta_2 [t_1] = (h_* \otimes h_*) ([v] \otimes [t_1] + [t_1] \otimes [v])$

 $= [\mathbf{v}] \otimes ig[t_1'ig] + ig[t_1'ig] \otimes [\mathbf{v}]$

 $\neq [v] \otimes \begin{bmatrix} t_1' \end{bmatrix} + \begin{bmatrix} t_1' \end{bmatrix} \otimes [v] + [a] \otimes [b] + [b] \otimes [a]$

$$=\Delta_{2}\left[t_{1}^{\prime}
ight]=\Delta_{2}h_{st}\left[t_{1}
ight]$$
 ,

which is a contradiction

• The non-primitive coproduct has detected the Hopf Link!

• Homology alone cannot distinguish links from unlinks.

3

Recap

- Homology alone cannot distinguish links from unlinks.
- For example,

$$H(UN) = \{[v], [a], [b], [t_1] = [t_2]\}$$

and $H(LN) = \{[v], [a], [b], [t'_1] = [t'_2]\},$
 $(UN) \approx H(LN).$

so $H(UN) \approx H(LN)$

Image: A matrix and a matrix

æ

Recap

- Homology alone cannot distinguish links from unlinks.
- For example,

$$\begin{array}{lll} H\left(UN\right) & = & \{ \left[v \right], \left[a \right], \left[b \right], \left[t_1 \right] = \left[t_2 \right] \} \\ \text{and} & H\left(LN \right) & = & \left\{ \left[v \right], \left[a \right], \left[b \right], \left[t_1' \right] = \left[t_2' \right] \right\}, \end{array}$$

so $H(UN) \approx H(LN)$.

• But perhaps homology with additional structure derived from diagonal approximations can distinguish between links.

Recap

- Homology alone cannot distinguish links from unlinks.
- For example,

$$\begin{array}{ll} H\left(UN\right) & = & \{ [v], [a], [b], [t_1] = [t_2] \} \\ \text{and} & H\left(LN \right) & = & \left\{ [v], [a], [b], [t_1'] = [t_2'] \right\}, \end{array}$$

so $H(UN) \approx H(LN)$.

- But perhaps homology with additional structure derived from diagonal approximations can distinguish between links.
- For example, the coproducts, Δ_2 , induced by diagonal approximations are different for *UN* and *LN*.

$$\begin{array}{lll} \Delta_2\left[t_1\right] &=& \left[v\right]\otimes\left[t_1\right]+\left[t_1\right]\otimes\left[v\right]\\ & \text{ is primitive.} \\ \Delta_2\left[t_1'\right] &=& \left[v\right]\otimes\left[t_1'\right]+\left[t_1'\right]\otimes\left[v\right]+\left[a\right]\otimes\left[b\right]+\left[b\right]\otimes\left[a\right]\\ & \text{ is not primitive.} \end{array}$$

• **Definition:** A nontrivial link is called Brunnian if it has the following property: Removing any component results in an unlink.

э

- **Definition:** A nontrivial link is called Brunnian if it has the following property: Removing any component results in an unlink.
- (a non-standard) Example: The Hopf link.

э

- **Definition:** A nontrivial link is called *Brunnian* if it has the following property: Removing any component results in an unlink.
- (a non-standard) Example: The Hopf link.

• (the most standard) Example: The Borromean rings.

- **Definition:** A nontrivial link is called *Brunnian* if it has the following property: Removing any component results in an unlink.
- (a non-standard) Example: The Hopf link.

• (the most standard) Example: The Borromean rings.

• **Convention:** Let BR_n denote the complement in S^3 of a Brunnian link with *n* components where n > 3.

Conjecture: A diagonal approximation Δ on $C(BR_n)$ induces

• a primitive diagonal Δ_2 : $H(BR_n) \rightarrow H(BR_n) \otimes H(BR_n)$,

3

< 🗗 🕨

Conjecture: A diagonal approximation Δ on $C(BR_n)$ induces

- a primitive diagonal Δ_{2} : $H(BR_{n}) \rightarrow H(BR_{n}) \otimes H(BR_{n})$,
- trivial k-ary operations $\Delta_k : H(BR_n) \to H(BR_n)^{\otimes k}$ for $3 \le k < n$, and

Conjecture: A diagonal approximation Δ on $C(BR_n)$ induces

- a primitive diagonal Δ_2 : $H(BR_n) \rightarrow H(BR_n) \otimes H(BR_n)$,
- trivial k-ary operations $\Delta_k : H(BR_n) \to H(BR_n)^{\otimes k}$ for $3 \le k < n$, and
- a non-trivial n-ary operation $\Delta_n : H(BR) \to H(BR)^{\otimes n}$.

• Describe an infinite family of Brunnian links, including cell decompositions and diagonal approximations.

- Describe an infinite family of Brunnian links, including cell decompositions and diagonal approximations.
- (computationally) Transfer the differential graded coalgebra structure on the chains to homology.

- Describe an infinite family of Brunnian links, including cell decompositions and diagonal approximations.
- (computationally) Transfer the differential graded coalgebra structure on the chains to homology.
- (hopefully) Observe the conjectured results.

- Describe an infinite family of Brunnian links, including cell decompositions and diagonal approximations.
- (computationally) Transfer the differential graded coalgebra structure on the chains to homology.
- (hopefully) Observe the conjectured results.
- Prove them in general.

The Hopf link: A Brunnian link with two components

2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

3

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

э

<ロ> (日) (日) (日) (日) (日)

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

An example of a cell decomposition

An example of a cell decomposition

An example of a cell decomposition

Tetrahedral Geometry/Topology Seminar

December 4, 2015 12 / 12

• parser for reading chain complex C and coproduct definition Δ_C

- parser for reading chain complex C and coproduct definition Δ_C
- utility to validate Δ_C

- parser for reading chain complex C and coproduct definition Δ_C
- utility to validate Δ_C
- program to compute homology (H) and a cycle-selecting map $g: H \rightarrow C$

- parser for reading chain complex C and coproduct definition Δ_C
- utility to validate Δ_C
- program to compute homology (*H*) and a cycle-selecting map $g: H \rightarrow C$
- program to initialize transfer of coproduct Δ_C : C → C ⊗ C to homology Δ₂ : H → H ⊗ H

- parser for reading chain complex C and coproduct definition Δ_C
- utility to validate Δ_C
- program to compute homology (*H*) and a cycle-selecting map $g: H \rightarrow C$
- program to initialize transfer of coproduct $\Delta_C : C \to C \otimes C$ to homology $\Delta_2 : H \to H \otimes H$
- program to inductively compute higher coalgebraic structures in homology (Δ_n)

Complex Specification (UN)

Used a subset of LaTeX to specify chain complexes

Diagonals

```
\% == COPRODUCT ====
\Delta v = v \setminus otimes v
\Delta a = v \otimes a + a \otimes v
\Delta b = v \otimes b + b \otimes v
\Delta s = v \otimes s + s \otimes v
<u>\Delta t {1}</u> = v \otimes t_{1} + t_{1} \otimes v
\Delta t {2} = v \otimes t {2} + t {2} \otimes v
\Delta p = v \otimes p + p \otimes v
\Delta q = v \otimes q + q \otimes v
```

イロト 不得下 イヨト イヨト

Complex Specification (LN)

For Hopf link, the cells and boundary are identical,

Tetrahedral Geometry/Topology Seminar

But the diagonals are different,

Diagonals

< ロ > < 同 > < 三 > < 三
• written in Python

• uses open-source library PLY (Python Lex-Yacc)

- specify tokens
- specify formal grammar using tokens
- it generates LR parser
- additionally wrote utility to export *ChainComplex* objects for SageMath

Need to verify that $\Delta \partial = (1 \otimes \partial + \partial \otimes 1)\Delta$. We have a script that checks this for all $c \in C$.

```
\Delta \partial p = \Delta (s)
       = s \otimes v + v \otimes s
(1 \otimes \partial + \partial \otimes 1) \Delta p = (1 \otimes \partial + \partial \otimes 1) (p \otimes v + v \otimes p)
                          = S \otimes V + V \otimes S
Diagonal Valid!: \Delta \partial p == (1 \otimes \partial + \partial \otimes 1) \Delta p
\Delta \partial a = \Delta (s + t \{2\} + t \{1\})
       = s \otimes v + t {2} \otimes v + t {1} \otimes v + v \otimes t {2} + v \otimes t {1} + v \otimes s
(1 \otimes \partial + \partial \otimes 1)\Delta q = (1 \otimes \partial + \partial \otimes 1) (v \otimes q + q \otimes v)
                           = s \otimes v + t_{2} \otimes v + t_{1} \otimes v + v \otimes t_{2} + v \otimes t_{1} + v \otimes s
Diagonal Valid!: ∆∂g == (1⊗∂ + ∂⊗1)∆g
All Diagonals Valid!
```

• Computational Homology Project software: CHomP

• Computational Homology Project software: CHomP

• computes homology from incidence matrices

• Computational Homology Project software: CHomP

- computes homology from incidence matrices
- can return generators

___ ▶

- Computational Homology Project software: CHomP
 - computes homology from incidence matrices
 - can return generators
- we interface with CHomP to obtain H

- Computational Homology Project software: CHomP
 - computes homology from incidence matrices
 - can return generators
- we interface with CHomP to obtain H
- use generators to construct cycle-selecting function g

```
Mervins-MacBook-Pro:CellularChainParser mfansler$ python transfer.py data/unlinked.tex
H = H*(C) = { h0_0 = ['v'], h1_0 = ['a'], h1_1 = ['b'], h2_0 = ['t_{1}'] }
α = a∂ {h1 0}
         + v∂_{h0_0}
           + t {1}∂ {h2 0}
           + b∂ {h1 1}
\Delta q = (v \otimes a + a \otimes v) \partial \{h1 0\}
         + (v ⊗ v)∂ {h0 0}
           + (v \otimes b + b \otimes v) \partial \{h1, 1\}
           + (v \otimes t \{1\} + t \{1\} \otimes v) \partial \{h2 0\}
\Delta 2 = (h0 \ 0 \otimes h1 \ 0 + h1 \ 0 \otimes h0 \ 0) \partial \{h1 \ 0\}
          + (h0_0 ⊗ h0_0)∂_{h0_0}
           + (h0_0 \otimes h1_1 + h1_1 \otimes h0_0) \partial_{11_1}
           + (h0 \ 0 \otimes h2 \ 0 + h2 \ 0 \otimes h0 \ 0) \partial \{h2 \ 0\}
```

We (computationally) confirm that Δ_2 on the wedge of two pinched spheres is primitive.

イロト イポト イヨト イヨト

```
Mervins–MacBook–Pro:CellularChainParser mfansler$ python transfer.py data/linked.tex
H = H*(C) = { h0 0 = ['v']. h1 0 = ['a']. h1 1 = ['b']. h2 0 = ['t {1}'] }
q = a∂ {h1 0}
         + v∂ {h0 0}
         + t_{1}∂_{h2_0}
         + b∂ {h1 1}
Δq = (v ⊗ a + a ⊗ v)∂ {h1_0}
        + (v ⊗ v)∂ {h0 0}
         + (v \otimes b + b \otimes v) \partial \{h1 1\}
         + (b \otimes a + a \otimes b + v \otimes t \{1\} + t \{1\} \otimes v) \partial \{h2 0\}
Δ_2 = (h0_0 ⊗ h1_0 + h1_0 ⊗ h0_0)∂ {h1_0}
         + (h0 0 ⊗ h0 0)∂ {h0 0}
         + (h0_0 \otimes h1_1 + h1_1 \otimes h0_0) \partial_{h1_1}
         + (h1 1 \otimes h1 0 + h1 0 \otimes h1 1 + h0 0 \otimes h2 0 + h2 0 \otimes h0 0)\partial {h2 0}
```

We (computationally) confirm that Δ_2 on the Hopf link is non-primitive!

э.

• finish implementing inductive step for Δ_n

- finish implementing inductive step for Δ_n
- generate and validate diagonals of higher component Brunnian links

- finish implementing inductive step for Δ_n
- generate and validate diagonals of higher component Brunnian links
- compute some (hopefully interesting) results

- finish implementing inductive step for Δ_n
- generate and validate diagonals of higher component Brunnian links
- compute some (hopefully interesting) results
- add infrastructure to SageMath to do computations in there

- finish implementing inductive step for Δ_n
- generate and validate diagonals of higher component Brunnian links
- compute some (hopefully interesting) results
- add infrastructure to SageMath to do computations in there
 - supports chain complexes...

- finish implementing inductive step for Δ_n
- generate and validate diagonals of higher component Brunnian links
- compute some (hopefully interesting) results
- add infrastructure to SageMath to do computations in there
 - supports chain complexes...
 - but lacks DG-(co)algebra

- finish implementing inductive step for Δ_n
- generate and validate diagonals of higher component Brunnian links
- compute some (hopefully interesting) results
- add infrastructure to SageMath to do computations in there
 - supports chain complexes...
 - but lacks DG-(co)algebra
 - has polytopes for Associahedron and Multiplihedron...

- finish implementing inductive step for Δ_n
- generate and validate diagonals of higher component Brunnian links
- compute some (hopefully interesting) results
- add infrastructure to SageMath to do computations in there
 - supports chain complexes...
 - but lacks DG-(co)algebra
 - has polytopes for Associahedron and Multiplihedron...
 - but lacks combinatorics and iterators

Thank you!

< 4 P > 1

æ