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Ultimate Goal of the Project

Computationally detect the linkage in an
n-component Brunnian link
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Review of Cellular Complexes

Let X be a connected network, surface, or solid embedded in S3
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Cellular Decompositions

A cellular decomposition of X is a finite collection of

discrete points (vertices or 0-cells)

closed intervals (edges or 1-cells)

closed disks (faces or 2-cells)

closed balls (solids or 3-cells)

glued together so that the

non-empty boundary of a k-cell is a union of (k − 1)-cells
non-empty intersection of cells is a cell

union of all cells is X
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Example: 2-dim’l Sphere

S2 = D2/∂D2 (Grandma’s draw string bag)

Vertex: {v}
Edges: ∅
Face: {S2}
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Example: Torus

T = S1 × S1

Product cells: {v ,a} × {v ,b}

Vertex: {v : = v × v}
Edges: {a := a× v , b := v × b}
Face: {T := a× b}
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Example: Pinched Sphere

P = T/b

Vertex: {v}
Edge: {a}
Face: {S}
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Example: Link Complement of Two Unknots

Let UN be the complement of disjoint tubular neighborhoods Ui of two
unlinked unknots in S3

∂ (U1 ∪ U2) is the wedge of two pinched spheres ti sharing a single
vertex v and two edges a and b

∂ (U1 ∪ U2) = ∂ (UN)
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Cellular Structure of UN

∂ (UN) is wedged with the equatorial 2-sphere s ⊂ S3

p = upper hemispherical 3-ball

q = lower hemispherical 3-ball r (U1 ∪ U2)
p and q are attached along s

UN = p ∪ q

Vertices: {v}
Edges: {a, b}
Faces: {s, t1, t2}
Solids: {p, q}
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Example: Link Complement of the Hopf Link

Let LN be the complement of disjoint tubular neighborhoods Ui of the
Hopf Link in S3

∂ (U1 ∪ U2) is the union of two linked tori t ′i sharing a single vertex v
and two edges a and b

∂ (U1 ∪ U2) = ∂ (LN)
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Cellular Structure of LN

∂ (LN) is wedged with the equatorial 2-sphere s ⊂ S3
p = upper hemispherical 3-ball
q′ = lower hemispherical 3-ball r (U1 ∪ U2)
p and q′ are attached along s
LN = p ∪ q′

Vertex: {v}
Edges: {a, b}
Faces: {s, t ′1, t ′2}
Solids: {p, q′}
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Homeomorphisms

X and Y are homeomorphic if

X can be continuously deformed into Y

∃ a bijective bicontinuous h : X → Y , called a homeomorphism

A square and a circle are homeomorphic

h−→

The boundaries of a doughnut and coffee cup are homeomorphic
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Homeomorphisms

UN and LN are not homeomorphic because...

Shrinking the tubular neighborhood of one component to point

shrinks ∂ (UN) to a pinched sphere

shrinks ∂ (LN) to a 2-sphere

How do we can detect this computationally?
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The Geometric Diagonal

Geometric diagonal ∆X : X → X × X is defined x 7→ (x , x)

A homeomorphism h : X → Y respects diagonals

∆Y h = (h× h)∆X

Objective: Compute the obstruction to a homeomorphism

h : UN → LN

Strategy:

Assume there is a homeomorphism h
Show that h fails to respect diagonals
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The Geometric Diagonal

Problem: Im ∆X is typically not a subcomplex of X × X

Example: Im ∆I is not a subcomplex of I× I :
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Diagonal Approximations

A map ∆ : X → X × X is a diagonal approximation if

∆ is homotopic to ∆X

∆ (en) is a subcomplex of en × en for every n-cell en ⊆ X
Geometric boundary ∂ : X → X is a coderivation of ∆

∆∂ = (∂× Id+ Id×∂)∆

Cellular Approximation Theorem

There is a diagonal approximation ∆ : X → X × X
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Diagonal Approximations

Preserve

Cellular structure: ∆ (en) ⊆ en × en

Dimension: dim∆ (en) = dim en

Cartesian products: ∆ (X × Y ) = ∆ (X )× ∆ (Y )

Wedge products: ∆ (X ∨ Y ) = ∆ (X ) ∨ ∆ (Y )

Tetrahedral Geometry/Topology Seminar ( Tetrahedral Geometry/Topology Seminar )Detecting Brunnian Linkage December 4, 2015 17 / 28



Diagonal Approximations

Preserve

Cellular structure: ∆ (en) ⊆ en × en

Dimension: dim∆ (en) = dim en

Cartesian products: ∆ (X × Y ) = ∆ (X )× ∆ (Y )

Wedge products: ∆ (X ∨ Y ) = ∆ (X ) ∨ ∆ (Y )

Tetrahedral Geometry/Topology Seminar ( Tetrahedral Geometry/Topology Seminar )Detecting Brunnian Linkage December 4, 2015 17 / 28



Diagonal Approximations

Preserve

Cellular structure: ∆ (en) ⊆ en × en

Dimension: dim∆ (en) = dim en

Cartesian products: ∆ (X × Y ) = ∆ (X )× ∆ (Y )

Wedge products: ∆ (X ∨ Y ) = ∆ (X ) ∨ ∆ (Y )

Tetrahedral Geometry/Topology Seminar ( Tetrahedral Geometry/Topology Seminar )Detecting Brunnian Linkage December 4, 2015 17 / 28



Diagonal Approximations

Preserve

Cellular structure: ∆ (en) ⊆ en × en

Dimension: dim∆ (en) = dim en

Cartesian products: ∆ (X × Y ) = ∆ (X )× ∆ (Y )

Wedge products: ∆ (X ∨ Y ) = ∆ (X ) ∨ ∆ (Y )

Tetrahedral Geometry/Topology Seminar ( Tetrahedral Geometry/Topology Seminar )Detecting Brunnian Linkage December 4, 2015 17 / 28



Dan Kravatz’s Diagonal Approximation on a Polygon

Given n-gon G , arbitrarily choose vertices v and v ′ (possibly equal)

Edges {e1, . . . , ek} and {ek+1, . . . , en} form paths from v to v ′

(one path {e1, . . . , en} if v = v ′)

Theorem (Kravatz 2008): There is a diagonal approximation

∆G = v × G + G × v ′

+
k

∑
i=2
(e1 + · · ·+ ei−1)× ei

+
n

∑
j=k+2

(ek+1 + · · ·+ ej−1)× ej

Tetrahedral Geometry/Topology Seminar ( Tetrahedral Geometry/Topology Seminar )Detecting Brunnian Linkage December 4, 2015 18 / 28



Dan Kravatz’s Diagonal Approximation on a Polygon

Given n-gon G , arbitrarily choose vertices v and v ′ (possibly equal)

Edges {e1, . . . , ek} and {ek+1, . . . , en} form paths from v to v ′

(one path {e1, . . . , en} if v = v ′)

Theorem (Kravatz 2008): There is a diagonal approximation

∆G = v × G + G × v ′

+
k

∑
i=2
(e1 + · · ·+ ei−1)× ei

+
n

∑
j=k+2

(ek+1 + · · ·+ ej−1)× ej

Tetrahedral Geometry/Topology Seminar ( Tetrahedral Geometry/Topology Seminar )Detecting Brunnian Linkage December 4, 2015 18 / 28



Dan Kravatz’s Diagonal Approximation on a Polygon

Given n-gon G , arbitrarily choose vertices v and v ′ (possibly equal)

Edges {e1, . . . , ek} and {ek+1, . . . , en} form paths from v to v ′

(one path {e1, . . . , en} if v = v ′)

Theorem (Kravatz 2008): There is a diagonal approximation

∆G = v × G + G × v ′

+
k

∑
i=2
(e1 + · · ·+ ei−1)× ei

+
n

∑
j=k+2

(ek+1 + · · ·+ ej−1)× ej

Tetrahedral Geometry/Topology Seminar ( Tetrahedral Geometry/Topology Seminar )Detecting Brunnian Linkage December 4, 2015 18 / 28



Example

Think of the pinched sphere t1 ⊂ ∂ (UN) as a 2-gon with vertices
identified first, then edges identified

∆t1 = v × t1 + t1 × v

∆ descends to quotients when edge-paths are consistent with
identifications
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Example

Think of the torus t ′1 ⊂ ∂ (LN) as a square with horizontal edges a
identified and vertical edges b identified

∆t ′1 = v × t ′1 + t ′1 × v + a× b+ b× a
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Cellular Chains

C (X ) denotes the Z2-vector space with basis {cells of X}

Elements are formal sums called cellular chains of X

Examples:

C (UN) has basis {v , a, b, s, t1, t2, p, q}
C (LN) has basis {v , a, b, s, t ′1, t ′2, p, q′}
Note that C (UN) ≈ C (LN)
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The Boundary Operator

Geometric boundary of an n-cell en is Sn−1

∂v = ∅; ∂e = S0; ∂f = S1; ∂s = S2

∂ (∂en) = ∂Sn−1 = ∅

Boundary operator ∂ : C (X )→ C (X )

Induced by the geometric boundary

Zero on vertices

Linear on chains

A derivation of the Cartesian product

∂ (a× b) = ∂a× b+ a× ∂b
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Examples

∂ : C (UN)→ C (UN) is defined

∂v = ∂a = ∂b = ∂s = ∂t1 = ∂t2 = 0

∂p = s

∂q = s + t1 + t2

∂ : C (LN)→ C (LN) is defined

∂v = ∂a = ∂b = ∂s = ∂t ′1 = ∂t ′2 = 0

∂p = s

∂q′ = s + t ′1 + t
′
2
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Cellular Homology

∂ ◦ ∂ = 0 implies Im ∂ ⊆ ker ∂

H (X ) := ker ∂/ Im ∂ is the cellular homology of X

Elements of H (X ) are cosets [c ] := c + Im ∂

Examples

H (UN) = {[v ] , [a] , [b] , [t1 ] = [t2 ]}
H (LN) = {[v ] , [a] , [b] , [t ′1 ] = [t ′2 ]}
Note that H (UN) ≈ H (LN)

How do diagonal approximations on UN and LN lift to homology?
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Key Facts

Homotopic maps of spaces induce the same map on their homologies

Every diagonal approximation ∆ : X → X × X induces the same map

∆2 : H (X )→ H (X × X )

A homeomorphism h : X → Y induces maps

h∗ : H (X )→ H (Y ) and (h× h)∗ : H (X × X )→ H (Y × Y )

such that ∆2h∗ = (h× h)∗ ∆2

If h : UN → LN is a homeomorphism, inequality is a contradiction
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Homology of Cartesian Products

If vector space A has basis {a1, . . . , ak} , the tensor product vector
space A⊗ A has basis {ai ⊗ aj}1≤i ,j≤k

C (X × X ) ≈ C (X )⊗ C (X ) via e × e ′ 7→ e ⊗ e ′

The boundary map

∂× Id+ Id×∂ : X × X → X × X

induces the boundary operator

∂⊗ Id+ Id⊗∂ : C (X )⊗ C (X )→ C (X )⊗ C (X )

Since Z2 is a field, torsion vanishes and

H (X × X ) ≈ H (X )⊗H (X )
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Induced Diagonal on H(X)

A diagonal approximation ∆ : X → X × X induces a coproduct

∆2 : H (X )→ H (X )⊗H (X )

defined by
∆2 [c ] := [∆c ]

A class [c ] of positive dimension is primitive if

∆2 [c ] = [v ]⊗ [c ] + [c ]⊗ [v ]

Examples

∆2 [t1] = [∆t1] = [v ]⊗ [t1] + [t1]⊗ [v ]

∆2
[
t ′1
]
=
[
∆t ′1
]
= [v ]⊗

[
t ′1
]
+
[
t ′1
]
⊗ [v ] + [a]⊗ [b] + [b]⊗ [a]
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Non-Primitivity Detects Linkage

If h : UN → LN is a homeomorphism, (h∗ ⊗ h∗)∆2 = ∆2h∗

But h∗ [t1] = [t ′1] implies

(h∗ ⊗ h∗)∆2 [t1] = (h∗ ⊗ h∗) ([v ]⊗ [t1] + [t1]⊗ [v ])

= [v ]⊗
[
t ′1
]
+
[
t ′1
]
⊗ [v ]

6= [v ]⊗
[
t ′1
]
+
[
t ′1
]
⊗ [v ] + [a]⊗ [b] + [b]⊗ [a]

= ∆2
[
t ′1
]
= ∆2h∗ [t1] ,

which is a contradiction

The non-primitive coproduct has detected the Hopf Link!
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Recap

Homology alone cannot distinguish links from unlinks.

For example,

H (UN) = {[v ] , [a] , [b] , [t1] = [t2]}
and H (LN) =

{
[v ] , [a] , [b] ,

[
t ′1

]
=

[
t ′2

]}
,

so H (UN) ≈ H (LN).
But perhaps homology with additional structure derived from
diagonal approximations can distinguish between links.
For example, the coproducts, ∆2, induced by diagonal approximations
are different for UN and LN.

∆2 [t1] = [v ]⊗ [t1] + [t1]⊗ [v ]
is primitive.

∆2

[
t ′1

]
= [v ]⊗

[
t ′1

]
+

[
t ′1

]
⊗ [v ] + [a]⊗ [b] + [b]⊗ [a]

is not primitive.
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Definition

Definition: A nontrivial link is called Brunnian if it has the following
property: Removing any component results in an unlink.

(a non-standard) Example: The Hopf link.

(the most standard) Example: The Borromean rings.

Convention: Let BRn denote the complement in S3 of a Brunnian
link with n components where n > 3.
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Conjecture

Conjecture: A diagonal approximation ∆ on C (BRn) induces

a primitive diagonal ∆2 : H (BRn)→ H (BRn)⊗H (BRn),

trivial k-ary operations ∆k : H (BRn)→ H (BRn)
⊗k for 3 ≤ k < n,

and

a non-trivial n-ary operation ∆n : H (BR)→ H (BR)⊗n.
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Work to do

Describe an infinite family of Brunnian links, including cell
decompositions and diagonal approximations.

(computationally) Transfer the differential graded coalgebra structure
on the chains to homology.

(hopefully) Observe the conjectured results.

Prove them in general.
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The Hopf link: A Brunnian link with two components
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Constructing a Brunnian link with 3 components

Tetrahedral Geometry/Topology Seminar ( Tetrahedral Geometry/Topology Seminar )Detecting Brunnian Linkage December 4, 2015 6 / 12



Constructing a Brunnian link with 3 components

Tetrahedral Geometry/Topology Seminar ( Tetrahedral Geometry/Topology Seminar )Detecting Brunnian Linkage December 4, 2015 6 / 12



Constructing a Brunnian link with 3 components

Tetrahedral Geometry/Topology Seminar ( Tetrahedral Geometry/Topology Seminar )Detecting Brunnian Linkage December 4, 2015 6 / 12



Constructing a Brunnian link with 3 components

Tetrahedral Geometry/Topology Seminar ( Tetrahedral Geometry/Topology Seminar )Detecting Brunnian Linkage December 4, 2015 6 / 12



Constructing a Brunnian link with 3 components

Tetrahedral Geometry/Topology Seminar ( Tetrahedral Geometry/Topology Seminar )Detecting Brunnian Linkage December 4, 2015 6 / 12



Constructing a Brunnian link with 3 components

Tetrahedral Geometry/Topology Seminar ( Tetrahedral Geometry/Topology Seminar )Detecting Brunnian Linkage December 4, 2015 6 / 12



Constructing a Brunnian link with 3 components

Tetrahedral Geometry/Topology Seminar ( Tetrahedral Geometry/Topology Seminar )Detecting Brunnian Linkage December 4, 2015 6 / 12



Constructing a Brunnian link with 3 components

Tetrahedral Geometry/Topology Seminar ( Tetrahedral Geometry/Topology Seminar )Detecting Brunnian Linkage December 4, 2015 6 / 12



Constructing a Brunnian link with 3 components

Tetrahedral Geometry/Topology Seminar ( Tetrahedral Geometry/Topology Seminar )Detecting Brunnian Linkage December 4, 2015 6 / 12



Constructing a Brunnian link with 4 components
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Constructing a Brunnian link with 5 components

Tetrahedral Geometry/Topology Seminar ( Tetrahedral Geometry/Topology Seminar )Detecting Brunnian Linkage December 4, 2015 8 / 12



Constructing a Brunnian link with 5 components

Tetrahedral Geometry/Topology Seminar ( Tetrahedral Geometry/Topology Seminar )Detecting Brunnian Linkage December 4, 2015 8 / 12



Constructing a Brunnian link with 5 components

Tetrahedral Geometry/Topology Seminar ( Tetrahedral Geometry/Topology Seminar )Detecting Brunnian Linkage December 4, 2015 8 / 12



Constructing a Brunnian link with 5 components

Tetrahedral Geometry/Topology Seminar ( Tetrahedral Geometry/Topology Seminar )Detecting Brunnian Linkage December 4, 2015 8 / 12



And so on . . .
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Assume the constructed links are Brunnian for k = n
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Then the constructed links are Brunnian for k = n + 1
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An example of a cell decomposition
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Software Components

We require the following software components:

parser for reading chain complex C and coproduct definition ∆C

utility to validate ∆C

program to compute homology (H) and a cycle-selecting map
g : H → C

program to initialize transfer of coproduct ∆C : C → C ⊗ C to
homology ∆2 : H → H ⊗ H

program to inductively compute higher coalgebraic structures in
homology (∆n)
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Complex Specification (UN)

Used a subset of LaTeX to specify chain complexes

Cells

Boundary
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Complex Specification (UN)

Diagonals
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Complex Specification (LN)

For Hopf link, the cells and boundary are identical,

Cells

Boundary
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Complex Specification (LN)

But the diagonals are different,

Diagonals
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Parser

written in Python

uses open-source library PLY (Python Lex-Yacc)

specify tokens
specify formal grammar using tokens
it generates LR parser

additionally wrote utility to export ChainComplex objects for
SageMath
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Validating Coproduct Definition

Need to verify that ∆∂ = (1⊗ ∂ + ∂ ⊗ 1)∆. We have a script that checks
this for all c ∈ C .
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Computing Homology

Computational Homology Project software: CHomP

computes homology from incidence matrices
can return generators

we interface with CHomP to obtain H

use generators to construct cycle-selecting function g
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Computing ∆2 on UN

We (computationally) confirm that ∆2 on the wedge of two pinched
spheres is primitive.
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Computing ∆2 on LN

We (computationally) confirm that ∆2 on the Hopf link is non-primitive!
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Work in Progress

What is left to be done?

finish implementing inductive step for ∆n

generate and validate diagonals of higher component Brunnian links

compute some (hopefully interesting) results

add infrastructure to SageMath to do computations in there

supports chain complexes...
but lacks DG-(co)algebra
has polytopes for Associahedron and Multiplihedron...
but lacks combinatorics and iterators
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The End

Thank you!
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