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Abstract
Secondary characteristic classes are geometric invariants, constructed as
potentials (antiderivatives) of lifts of primary characteristic forms to an
appropriate space, and give invariants either when the primary
characteristic form vanishes completely, or as a difference form between
two geometric structures. The first appearance of secondary characteristic
classes was Chern’s proof of the generalized Gauss-Bonnet theorem, but
was used by him only in a limited way.
A beautiful paper by Chern and James Simons in 1974 re-constructed
Chern’s original transgressive forms in a more general setting, and initiated
the study of these secondary invariants in their own right. The first
non-trivial such invariant was constructed on a compact 3-manifold as a
conformal invariant, but has become a fundamental "action integral" in
theoretical physics.
I will discuss further applications of these invariants, to:

1 Moduli problems for vector bundles (Jacobians)
2 Boundary terms for characteristic classes
3 Ricci flow



Gauss-Bonnet

In 1830 or so, Gauss (and Bonnet, separately: Bonnet actually published
the result in some form; Gauss apparently did not), came up with a local
version of a result now named after both of them, which connects the
Euler characteristic of a surface to an integral of curvature, relating the
geometry of the surface to this basic topological invariant.

Theorem
[Gauss–Bonnet] On a closed, oriented surface Σ,∫

Σ
KdS = 2πχ(Σ),

where K is the Gaussian (or intrinsic) curvature of the surface and χ(Σ) is
the Euler characteristic of the surface,
χ(Σ) = #faces −#edges + #vertices for any triangulation of the surface.
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Poincaré-Hopf
if you have a "generic" continuous vector field X tangent to a compact
manifold M of arbitrary dimension, then there have to be a finite number
of points pi on the manifold where the vector field is 0, and integers ni
(called the index of the vector field at that point), are related to the Euler
characteristic, connecting it to differential topology.

Theorem
[Poincaré-Hopf] If X is a continuous tangent vector field on M, with
finitely many zeros {p1, . . . , pk} of index {n1, . . . , nk}, then∑

i
ni = χ(M).

Near a singular point pi , divide X by its length, X/ |X |. For a given
distance ε from pi , which is a small (n − 1)-sphere, you get a map from
that Sn−1, to the unit tangent vectors, which are also a sphere. Any
continuous map from Sn−1 to itself is determined by its degree ni . That
degree is the index of the point.
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Chern



Gauss-Bonnet-Chern
In three remarkable papers from 1944 to 1946, Shiing-Shen Chern set the
stage for the modern theory of characteristic classes. The 1945 paper, (On
the curvatura integra in a Riemannian manifold) was more complex in
appearance than the predecessor (A simple, intrinsic proof of the
Gauss-Bonnet theorem for closed Riemannian manifolds). What each did
was show that there was an integrand, made up from the curvature tensor,
which when integrated over the manifold gave the Euler characteristic, for
any compact, oriented, even-dimensional manifold M2n. The third paper
constructed what we now call Chern classes.

Theorem
[Allendorfer and Weil, S-S Chern] Let M2n be an even-dimensional,
compact, oriented Riemannian manifold. For a specific polynomial χ(Ω) of
degree n in the terms of the curvature form, the Euler characteristic of M
is the integral ∫

M
χ(Ω) = χ(M).
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Chern’s Proof
Chern constructed an auxiliary form Φ which was of degree (2n − 1), but
which was not defined on the manifold itself, Φ was defined on the unit
tangent bundle to the manifold, π : T1(M)→ M. It depended not only on
the curvature, but on the connection as well. The form χ(M) had already
been defined by Allendorfer and Weil; it made sense on M, and depended
only on curvature (so was tensorial).

The first purpose of that auxiliary form Φ was to show that, on the unit
tangent bundle,

dΦ = π∗χ(Ω),

so that it really is a potential form, for a very specific 2n-form on M. But
also, he used this to construct an almost trivial proof that this integrand
actually gave the Euler characteristic. Given a generic vector field X on M,
except for a finite number of singular points you can make it a unit vector
field by U := X/ |X |, and that U : M → T1(M) (except at those points)
allows us to pull back this potential equation to M itself. Where you could
pull it back, of course dU∗Φ = U∗π∗χ(Ω) = χ(Ω).
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Explicitly
In this version, ωij is the connection form for the Levi-Civita connection,
with respect to a frame {e1, . . . , en} on T1(M) so that en is the
outward-pointing normal at each ν ∈ T1(M). Ωij is the curvature form. ωij
and Ωij are skew-symmetric matrices of forms (degree 1 and 2), depending
on the frame. Then, (how he saw this, I have no idea), if you set

Φk :=
∑

α∈Sn−1

(−1)α Ωα1α2 ∧ · · · ∧ Ωα2k−1α2k ∧ ωα2k+1n ∧ · · · ∧ ωαn−1n,

then

Φ =
1
πp

p−1∑
k=0

1
1 · 3 · · · (2p − 2k − 1) · 2p+kk!

Φk .

The form χ(Ω) is a little less complicated,

χ(Ω) =
1

22pπpp!

∑
α∈S2p

(−1)αΩα(1)α(2) · · ·Ωα(2p−1)α(2p).



GBC2
Looking carefully at his primitive term Φ, using Stokes’ theorem, and
cutting small balls Bpi (ε) of radius ε away from each of the singular points
{p1, . . . , pk} of the vector field

∫
M
χ(Ω) = lim

ε↓0

∫
M−{Bp1 (ε),...,Bpk (ε)}

χ(Ω)

= lim
ε↓0

∫
M−{Bp1 (ε),...,Bpk (ε)}

dU∗Φ

= lim
ε↓0

∑
i

∫
∂Bpi

U∗Φ

=
∑

ni = χ(M).

More generally, if M has a boundary, then the boundary has a well-defined
unit normal ν, and the theorem becomes (not stated by Chern):∫

M
χ(Ω) = χ(M) +

∫
∂M

ν∗Φ.
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Classical Invariant Theory

That form χ(Ω) is only one of several such invariant tensors defined from
the curvature. All of these invariants come from classical linear algebra.
Given a k × k matrix A, an invariant polynomial P is a polynomial
expression P(A) in the components of A that is invariant under
conjugation of A. Some invariant polynomials are invariants under
conjugation by Gl(k,R), like the determinant or the trace, others only are
invariant under subgroups and defined for related matrices.



Groups and invariants

U(k) A ∈ u(k), complex k × k matrices so that At
= −A. Any

coefficient of the complex characteristic polynomial
detC(A− λI) is an invariant polynomial in A. Up to a
constant, the coefficient of λk−j is the jth Chern polynomial
cj(A).

O(k) A ∈ o(k), skew-symmetric n × n matrices. Characteristic
polynomial detR(A− λ) =

∏
(r2

i + λ2), even degrees only;
generate Pontryagin polynomials pj(A) (degree 2j).

SO(2k) A ∈ o(2k), but orientation taken into account. Get one extra
polynomial e(A) =

√
det(A) = Pfaff (A).
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Geometries

A vector bundle E → M (such as the tangent bundle) has various
structural groups associated with it. Geometric structures correspond to
certain structural groups: if E is a complex vector bundle, rank k, with a
compatible metric has U(k) as structural group. A real vector bundle has
O(k), or, if oriented, SO(k).

Corresponding to each geometric structure, you have connection and
curvature forms with values in the Lie algebras of those groups, u(k)
(skew-Hermitian), o(k), and so(k). So, applying the invariant polynomials
to the curvature, you get forms:
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Euler, Chern and Pontryagin

Chern classes: cj(Ω), of degree 2j for complex bundles of rank k.
These classes are a nearly complete topological
characterization of a complex vector bundle, giving in
particular primary obstructions to the existence of (k − j + 1)
frames over 2j-dimensional submanifolds.

Pontryagin classes, pj(Ω), degree 4j , for real bundles (here the
obstruction theory is more complicated), and

Euler class, e(Ω), of degree k/2, for even-rank orientable real
bundles. For the tangent bundle, this is χ(Ω). This class
provides a primary obstruction to the existence of a section
of the bundle over 2k-dimensional submanifolds.
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Chern-Simons

In 1974, Chern and Jim Simons published a paper which connected all of
these characteristic classes back to Chern’s construction, defining a general
formula for the transgression (potential) form and then examining the
geometric properties of the potential. To each invariant polynomial P,
they constructed a form TP(ω), which is only defined on the principal
bundle of bases of E → M. Explicitly,

TP(ω) = j
∫ 1

0
P
(
ω, φj−1

t

)
dt,

where ω is the connection form, φt := tΩ + (t2 − t) [ω, ω] is a mysterious
2-form, and the polynomial P(A) is turned into a multilinear symmetric
function by polarization.



Chern-Simons

In 1974, Chern and Jim Simons published a paper which connected all of
these characteristic classes back to Chern’s construction, defining a general
formula for the transgression (potential) form and then examining the
geometric properties of the potential. To each invariant polynomial P,
they constructed a form TP(ω), which is only defined on the principal
bundle of bases of E → M. Explicitly,

TP(ω) = j
∫ 1

0
P
(
ω, φj−1

t

)
dt,

where ω is the connection form, φt := tΩ + (t2 − t) [ω, ω] is a mysterious
2-form, and the polynomial P(A) is turned into a multilinear symmetric
function by polarization.



Theorem
[Chern and Simons] For any degree-j invariant polynomial P of matrices
A ∈ g, g a Lie algebra, and any principal G-bundle π : B → M, with
connection ω and curvature Ω, the form TP(ω) satisfies

dTP(ω) = π∗ (P(Ω)) .



Simons



The point of their construction is in the applications. If, for example, for
some connection ω and curvature Ω the primary class P(Ω) = 0 (as a
form, not just in cohomology), then dTP(ω) = 0, so we get a cohomology
class, a secondary characteristic class. This is still on the principal bundle
B, but modulo integer cohomology (forms of integral periods), it is
well-defined as a cohomology class in H2j−1(M,R/Z). That class does
depend on the connection, so gives geometric, not topological, information.

The question is what information?
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3-manifolds

Let M3 be a compact, oriented Riemannian 3-manifold. The bundle we
consider is the tangent bundle, with the connection being the Levi-Civita
connection of a given metric on the manifold. Then, since p1(Ω), the form
representing the first Pontryagin class, is a 4-form on a 3-manifold, it is 0.
Even when lifted up to the bundle of frames of the tangent bundle, still 0.
So, Tp1(ω) is a well-defined element of H3(M,R/Z) = R/Z. But, since
T∗(M) is trivial, for a given trivialization Tp1(ω) can be defined as an
element of H3(M,R) = R. The integral

∫
M Tp1(ω) is called the

Chern-Simons invariant (or action, or energy) in the theoretical physics
literature, and is interpreted as having physical significance.

Chern and Simons interpret the invariant slightly differently, as a
conformal invariant:



3-manifolds

Let M3 be a compact, oriented Riemannian 3-manifold. The bundle we
consider is the tangent bundle, with the connection being the Levi-Civita
connection of a given metric on the manifold. Then, since p1(Ω), the form
representing the first Pontryagin class, is a 4-form on a 3-manifold, it is 0.
Even when lifted up to the bundle of frames of the tangent bundle, still 0.
So, Tp1(ω) is a well-defined element of H3(M,R/Z) = R/Z. But, since
T∗(M) is trivial, for a given trivialization Tp1(ω) can be defined as an
element of H3(M,R) = R. The integral

∫
M Tp1(ω) is called the

Chern-Simons invariant (or action, or energy) in the theoretical physics
literature, and is interpreted as having physical significance.

Chern and Simons interpret the invariant slightly differently, as a
conformal invariant:



Conformal Metrics

Theorem
[Chern-Simons] If Mt is a family of 3-manifolds that are conformally
equivalent, then

d
dt Tp1(Mt) = 0,

so the Chern-Simons class is a conformal invariant.

They also have a corollary which would seem to be somewhat more
intrinsically interesting:

Theorem
If M3 is simply-connected, then for all Riemannian metrics Mg , define
Φ(g) :=

∫
M Tp1(Mg ). Either Φ has exactly one critical point and M ∼= S3,

or Φ has no critical point and M � S3.
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Ricci Flow

Ricci flow is a particular evolution of a Riemannian metric, given as a
solution to the differential equation

∂gij
∂t = −2Ricij ,

so the change of the metric with respect to time is in the direction of the
Ricci tensor. I wondered whether there was any relationship between this
flow and the Chern-Simons class above, and had my student, Chris
Godbout, work on the problem of whether Tp1(ω) was invariant along a
Ricci flow, or perhaps varied with the Ricci flow.

Theorem
[Godbout] Neither.
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Complex vector bundles
If M is a Kähler manifold, and E → M is a complex vector bundle, then
automatically E is an almost-complex manifold. It may be that there is an
integrable complex structure (so that π : E → M is holomorphic), or
maybe not, but if there are there may be many inequivalent such
structures, different holomorphic bundles with the same underlying
topological structure. Secondary characteristic classes play a role in
understanding these moduli problems.
LetM(E0) = {(E0, J)/ ∼} be the set of holomorphic bundles realizable
on a given bundle E0 (with complex structure J0), modulo holomorphic
equivalence. Fixing a Hermitian inner product on E0 (it will be Hermitian
on all (E0, J)) determines a connection ω on the bundle of bases for each
(E0, J), along with a curvature form Ω that is a matrix of forms of bidegree
(1, 1) [dzj ∧ dz j ]. Then, for any Chern polynomial cj , the difference forms

Tcj(ω)− Tcj(ω0)

are well-defined on the bundle of bases, and, projected to the forms of
bidegrees (p, q) with p < q become closed in that complex of forms, and
are well-defined modulo the images of integer-valued forms.
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Intermediate Jacobians

Theorem
The mapping

Tcj :M(E0) → H0,2p−1(M)⊕ · · · ⊕ Hp−1,p(M)/H2p−1(M,Z)

defined by (E , J) 7→ [Tcj(ω)− Tcj(ω0)] gives a map fromM(E0) to the
(Griffiths) intermediate Jacobian.

Theorem
If E0 has rank 1, the mapping

Tc1 :M(E0) → H0,1(M)/H1(M,Z) ∼= Pic0(M)

defined by (E , J) 7→ [Tc1(ω)− Tc1(ω0)] is an isomorphism.
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Associated bundles

You may have noticed a significant difference between this new theory and
Chern’s original results, which after all started all this. The forms TP(ω)
are always defined on the principal bundle of bases of the vector bundle,
not on the vector bundle itself, or on its unit sphere bundle, while Chern’s
form Φ was defined on the unit tangent bundle. In general if B → M is a
fiber bundle with fibers (say) a homogeneous space F = G/H, then there
is associated to that bundle a principal bundle P → M. P → B is also a
principal bundle, with fiber H. Any connection ω on P can be split up to
those parts which are vertical (tangent to the fibers H of P → B and
those which are horizontal, ω = φ+ ψ. Similarly, for any polynomial Q,
there is a decomposition of the potential form TQ(ω) into parts that are
well-defined on B → M and those which are only defined on P → B → M.



The part which is defined on B → M, denoted ΦQ(ω), satisfies a more
complicated equation than would be suggested by Chern’s original result,
even though that is a special case of this theorem. Another special case of
this was called a heterotic formula by Vafa-Whitten (also called an
anomaly equation):

Theorem
[-, Nie] If π : B → M is an associated bundle with fiber F = G/H, and if
p : P → M is the associated principal bundle, with π1 : P → B the
principal H-bundle connecting them, then for any invariant polynomial Q
of G the form ΦQ(ω) satisfies

dΦQ(ω) = Q(Ω)− Q(Ψ),

where Ψ is the curvature of P → B.

In some cases, such as if Q is the Euler polynomial and the associated
bundle is the unit tangent bundle, the form Q(Ψ) will be identically 0,
recovering Chern’s result. This also immediately gives boundary terms for
not only the Euler class, but for the Chern classes, providing a direct,
rather than "universal" proof of the basic obstruction properties.
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More secondary classes

In any of the above situations, if Q(Ω) = 0, such as if the dimension of M
is 2deg(Q)− 1, there will be corresponding secondary invariants in the
R/Z cohomolgy of the base. The Pontryagin classes are more
complicated, in general, than the others, but all are well-defined.

Theorem
If M4k−1 is a compact, simply-connected manifold, with B → M the unit
tangent bundle of M, and if ω is the Riemannian connection of a given
Riemannian metric on M, then the forms σ∗(Φpk(ω)) are well-defined as
secondary characteristic classes in H4k−1(M,R), depending only upon the
metric, and are conformally invariant.

Fact
These forms are not always the same as the Chern-Simons forms.
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