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Gauss linking integral

Carl Friedrich Gauss, in a half-page paper dated January 22, 1833,
gave an integral formula for the linking number in Euclidean
3-space,

Link(K1,K2) =

ˆ
K1×K2

dx

ds
× dy

dt
· x− y

4π|x− y|3
ds dt.
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General goal

Our goal is to define geometrically natural linking integrals for
each of the eight homogeneous three-dimensional geometries

R3, S3, H3, S2 × R, H2 × R,

Nil, Sol, SL(2,R)

and at least some of their higher-dimensional generalizations.
“Geometrically natural” in this context means that the integrands
should be invariant under orientation-preserving isometries of the
ambient spaces.
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Another expression for the Gauss integral

Another way to write Gauss’s formula is to define the double-form

Φ1,1(x, y) =
ω1,1

4π|x− y|3

on R3 × R3, where

ω1,1 = (y1 − x1)(dx2 ⊗ dy3 − dx3 ⊗ dy2) + (y2 − x2)(dx3 ⊗ dy1 − dx1 ⊗ dy3)

+ (y3 − x3)(dx1 ⊗ dy2 − dx2 ⊗ dy1).

Thinking of the curves K1 and K2 as maps from S1 into R3, we define

Link(K1,K2) =

ˆˆ
S1×S1

X∗Φ1,1

where X = (x, y) is the product mapping.
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Double forms

• A double-form is a differential form on M ×M which can be
viewed either as a differential form on the first factor with
coefficients being differential forms on the second factor, or
vice versa.

• A (p, q)-form has of degree p over the first M factor and of
degree q over the second. For example, a (2, 1)-form on
R3 × R3 can be expressed as:

f (x, y)dx2 ∧ dx3 ⊗ dy1 + · · ·

and so on for nine terms.

• For such forms, we have exterior derivatives dx and dy which
commute with each other and have other standard properties
such as d2

x = d2
y = 0, etc.
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Linking integrals

We wish to calculate the linking number of K and L via an integral
of the form

Link(K , L) =

ˆ
K×L

Φ1,1(x, y),

where x ∈ K and y ∈ L and Φ1,1 is an appropriately-chosen
isometry-invariant (1,1)-form on (M)× (M). The form Φ1,1 will be
singular along the diagonal ∆ of (M)× (M), but will be smooth
otherwise.
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Link-homotopy invariance

If there is a (2,0)-form Ψ2,0(x, y) having the property that
dyΨ2,0 = dxΦ1,1 as (2,1)-forms on M ×M) \∆, define the
ordinary 1-form

Ω1(x) =

ˆ
L

Φ1,1(x, y)

on M \ L by integrating Φ1,1 over the curve L for each x 6∈ L.
Then we will have

dxΩ1 = dx

ˆ
L

Φ1,1(x, y) =

ˆ
L

dxΦ1,1(x, y) =

ˆ
L

dyΨ2,0(x, y) = 0,

by Stokes’s Theorem. So Ω1 is a closed 1-form (in x) on M \ L,
and the value ofˆ

K
Ω1(x) =

ˆ
K×L

Φ1,1(x, y) = Link(K , L)

depends only on the homology class of K within M \ L, so K can
be deformed without affecting the value of the linking integral as
long as K never meets L.

D. DeTurck Tetrahedral Geometry/Topology Seminar 7 / 32



Link-homotopy invariance

• Likewise, if there is a (0,2)-form Ψ0,2(x, y) having the
property that dxΨ0,2 = dyΦ1,1 as (1,2)-forms on (M ×M) \∆
we can deform L as long as it never meets K and not affect
the value of the linking integral.

• Our goal will be to produce isometry-invariant forms Φ1,1,
Ψ2,0 and Ψ0,2 and to show that they satisfy the differential
equations dyΨ2,0 = dxΦ1,1 and dxΨ0,2 = dyΦ1,1.
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Rn, Sn, Hn

Write x = (x0, x1, . . . , xn) and y = (y0, y1, . . . , yn) for points in
Rn+1, and 〈x , y〉± for the inner product on Rn+1 given by

〈x , y〉± = x0y0 ± (x1y1 + x2y2 + · · ·+ xnyn).

We will then view Sn ⊂ Rn+1 as

Sn = {x ∈ Rn+1 | 〈x , x〉+ = 1},

Hn ⊂ Rn+1 as

Hn = {x ∈ Rn+1 | 〈x , x〉− = 1, x0 > 0},

and Rn ⊂ Rn+1 as

Rn = {x ∈ Rn+1 | x0 = 1}.
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Group actions

There are natural group actions on Rn+1 that restrict to groups of
isometries on Sn, Hn and Rn, namely the standard actions of
SO(n + 1), SO+(1, n) and E (n) respectively, where E (n) is the
group of Euclidean motions of Rn. An element of E (n) is given by
the matrix 

1 0

v R

 ,
where R ∈ SO(n) and v ∈ Rn, so this matrix rotates Rn according
to the matrix R and then translates by v.
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Basic invariant forms

Let x and y be two points in Rn+1. For each k and ` satisfying
k + ` = n − 1, define a differential form ωk,` as follows:

For v1, v2, . . . , vk ∈ TxRn+1 and w1,w2, . . . ,w` ∈ TyRn+1,

ωk,`(x, y; v1, . . . , vk ;w1, . . . ,w`) = ‖x, y, v1, . . . , vk ,w1, . . . ,w`‖ .

Formally think of ωk,` as the determinant

1

k!`!
‖x, y, dx, . . . , dx, dy, . . . , dy‖
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More forms

Two other families of forms for k + ` = n:

αk,`(x, y; v1, . . . , vk ;w1, . . . ,w`) = ‖x, v1, . . . , vk ,w1, . . . ,w`‖ ,

βk,`(x, y; v1, . . . , vk ;w1, . . . ,w`) = ‖y, v1, . . . , vk ,w1, . . . ,w`‖ .
Forms restrict in a natural way to M, are invariant under the
action of G . Also write:

αk,` =
1

k!`!
‖x, dx, . . . , dx, dy, . . . , dy‖

βk,` =
1

k!`!
‖y, dx, . . . , dx, dy, . . . , dy‖ .

Define exterior differential operators, dx and dy. Check that

dxωk,` =
1

k!`!
‖dx, y, dx, . . . , dx, dy, . . . , dy‖ = −(k + 1)βk+1,`

and

dyωk,` =
1

k!`!
‖x, dy, dx, . . . , dx, dy, . . . , dy‖ = (−1)k(`+1)αk,`+1.
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Distance functions

• Let σ = σ(x, y) = 〈x , y〉+. The geodesic distance α between
two points x and y on Sn is α = arccosσ.

• Likewise, if σ = 〈x , y〉−, the geodesic distance α between two
points x and y on Hn is α = arccoshσ.

• And of course the distance between two points x and y on Rn

is α = ((y − x) · (y − x))1/2 and we let σ = 1
2(y − x) · (y − x)

in this case.
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Linking integrands

To construct linking integrands, need an identity of the form:

dx[ϕ(σ)ω1,1] = dy[ψ(σ)ω2,0],

where σ is a function of the distance α(x, y) between x and y. On
S3 and H3, use σ = 〈x , y〉±, so that σ = cosα and σ = coshα
respectively.
On S3 (and H3), we have

dx[ϕ(σ)ω1,1] = ϕ′(σ) [α2,1 − σβ2,1]− 2ϕ(σ)β2,1

and
dy[ψ(σ)ω2,0] = −ψ′(σ) [β2,1 − σα2,1] + ψ(σ)α2,1.
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Differential equations for ϕ and ψ

Because α2,1 and β2,1 are independent we need the coefficients of
both to be equal for these quantities to be equal. So ϕ and ψ
must satisfy:

ϕ′(σ)− σψ′(σ)− ψ(σ) = 0

σϕ′(σ) + 2ϕ(σ)− ψ′(σ) = 0.

Derive that ϕ satisfies the second-order equation

(1− σ2)ϕ′′ − 5σϕ′ − 4ϕ = 0. (∗)

Likewise
(1− σ2)ψ′′ − 5σψ′ − 3ψ = 0.

Thus we can find functions ψ and χ so that

dx[ϕω1,1] = dy[ψω2,0] and dy[ϕω1,1] = dx[χω0,2].

We refer to this fact as the Key Lemma.
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Solution on R3

On R3 the differential equation for ϕ(σ) analogous to (∗) is:

2σϕ′′ + 5ϕ′ = 0 which has general solution ϕ(σ) =
C1

σ3/2
+ C2.

We want ϕ to decay to zero when σ →∞, so C2 = 0.

By considering a single nontrivial example, we get that
C1 = 1/ vol(S2) so

Link(K , L) =
1

4π

ˆˆ
K×L

ω1,1

σ3/2

just as Gauss did.
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Solution on S3

On S3,

ϕ = c1
σ

(1− σ2)3/2
+ c2

√
1− σ2 − σ arccosσ

(1− σ2)3/2
.

We need
lim
σ↓−1

ϕ(σ)

to be finite, and considering a single non-trivial example (two
orthogonal linked great circles), we conclude that

c2 = ϕ(0) =
1

4π2
and c1 =

1

4π
.

This determines the linking integral on S3.
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H2 × R

Now consider M = H2 × R, and write 〈v , w〉 rather than
〈v , w〉− = v0w0 − v1w1 − v2w2 for the Minkowski inner product
on R3.

View H2 ⊂ R3 as the set {x(x0, x1, x2) | 〈x , x〉 = 1}. Write the
induced inner product on H2 as v ·w = −〈v , w〉.

H2 × R is diffeomorphic to R3.
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Isometry group

The connected component of the isometry group of H2 × R is the
product of those of H2 and R, namely G = SO+(1, 2)× R.

Recall that SO+(1, 2) is the three-dimensional restricted Lorentz
group, i.e., the Lie group of transformations of R3 which preserve
the indefinite inner product we are using (hence the ‘O’ and the
‘1,2’), and which both preserve the orientation of R3 (hence the
‘S’) and which independently preserve the orientation of space and
the direction of “time” (i.e., of x0, hence the ‘+’). The R factor of
G acts by translation on the R factor of H2 × R.

The the isometry group acts transitively on H2 × R, however, since
the group is only 4-dimensional, it cannot act transitively on the
unit tangent bundle of H2 × R, which is 5-dimensional.
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Invariant functions

The distance D(x, y) between two points x and y in H2 × R
satisfies

D2 = (arccosh 〈x , y〉)2 + (x3 − y3)2.

On H2 × R, two independent isometry-invariant two-point
functions are

σ(x, y) = 〈x , y〉 = x0y0 − x1y1 − x2y2 and τ(x, y) = x3 − y3.

Any isometry-invariant two-point function can be expressed as
F (σ(x, y), τ(x, y)). For instance, the distance D(x, y) between the
two points x and y on M satisfies D2 = (arccoshσ)2 + τ2, as
noted above.
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Key Lemma

Since ((H2 × R)× (H2 × R)) \∆ is simply connected, we have

A necessary and sufficient condition for the integral

ˆ
K×L

Φ1,1

to be link-homotopy invariant (i.e., to remain unchanged under
deformations of the simple closed curves K and L which keep K
and L disjoint) is that Φ1,1 be smooth and

dydxΦ1,1 = 0

on ((H2 × R)× (H2 × R)) \∆.
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Invariant forms

We assume that

Φ1,1 = f (σ, τ)ω1,0⊗dy3+g(σ, τ) dx3⊗ω0,1+p(σ, τ)α1,1+q(σ, τ)β1,1,

where σ = 〈x , y〉 and τ = x3 − y3 are the invariant functions on
(H2 × R)× (H2 × R). We calculate:

dydxΦ1,1 = dydx(f ω1,0 ⊗ dy3 + g dx3 ⊗ ω0,1 + p α1,1 + q β1,1)

=
(
(1− σ2)fσσ − 4σfσ − 2f + σ pστ + 2pτ + qστ

)
γ2,1 ∧ dy3

+
(
(σ2 − 1)gσσ + 4σgσ + 2g + pστ + σ qστ + 2qτ

)
γ1,2 ∧ dx3

+ (σfστ + fτ + gστ − pττ )α1,1 ∧ dx3 ∧ dy3

− (fστ + σgστ + gτ + qττ )β1,1 ∧ dx3 ∧ dy3.
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Differential equations

From this we have

Let

Φ1,1 = f ω1,0 ⊗ dy3 + g dx3 ⊗ ω0,1 + p α1,1 + q β1,1

In order for the linking integral to be link-homotopy invariant we
need

0 = (1− σ2)fσσ − 4σfσ − 2f + σ pστ + 2pτ + qστ

0 = (1− σ2)gσσ − 4σgσ − 2g − pστ − σ qστ − 2qτ

0 = σfστ + fτ + gστ − pττ

0 = fστ + σgστ + gτ + qττ

on ((H2 × R)× (H2 × R)) \∆.
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Geometric strategy for solving the system

If K is given by x(s) and L by y(t) then for each pair of points
x(s),y(t) we construct the unit “pointing” vectors
pyx(s, t) ∈ Tx(H2 × R) and pxy(s, t) ∈ Ty(H2 × R) that point
along the geodesic from x(s) to y(t) and from y(t) to x(s)
respectively.

Calculate the projection of the area spanned by ∂pyx/∂s and
∂pyx/∂t onto the tangent plane at pyx to the unit sphere in
Tx(H2 × R), and the projection of the area spanned by ∂pxy/∂t
and ∂pxy/∂s onto the tangent plane at pxy to the unit sphere in
Ty(H2 × R).

The average of these gives the value of our linking integral
candidate evaluated at (x, y) ∈ (H2 × R)× (H2 × R) on the
vectors dx/ds ∈ Tx(H2 × R) and dy/dt ∈ Ty(H2 × R).

It turns out that the (1,1)-form Φ1,1 obtained in this way is the
correct linking integrand on H2 × R.
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The result

Theorem (with Matt Klein and Lianxin He)

The linking form on H2 × R is

Φ1,1 =
1

8π

(
(arccoshσ)2

((arccoshσ)2 + τ2)3/2(σ − 1)
(dx3 ⊗ ω0,1 − ω1,0 ⊗ dy3)

+
τ arccoshσ

((arccoshσ)2 + τ2)3/2
√
σ2 − 1

(α1,1 + β1,1)

)

D. DeTurck Tetrahedral Geometry/Topology Seminar 25 / 32



The Heisenberg group

The usual way to think of the Heisenberg group is as the set of
3-by-3 matrices

H =


 1 p r

0 1 q
0 0 1

 | p, q, r ∈ R

 ,

but we will use a slightly different representation via 4-by-4
matrices as follows:

H =




1 a b c
0 1 0 b
0 0 1 −a
0 0 0 1

 | a, b, c ∈ R

 .
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Isometries and invariant functions

For the left-invariant metric on the Heisenberg group, the isometry
group is the semi-direct product of the group of left translations
with the one-dimensional group of rotations in the first two
coordinates. If we view H as the subset of R4 given by
(x1, x2, x3, 1), then all isometries can be viewed as linear
transformations of R4 which preserve the hyperplane x4 = 1.

If F is any function of two points x = (x1, x2, x3, 1) and
y = (y1, y2, y3, 1) invariant under the action of the isometry group,
then the derivative of F is zero along Killing fields. Obtain that
any isometry-invariant two-point function on H is dependent upon
the “common sense” two-dimensional distance function

σ = (x1 − y1)2 + (x2 − y2)2 and τ = y3 − x3 − x1y2 + x2y1.
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Basic differential forms

Since the isometries are unimodular transformations of R4, we can
use the same basic differential forms ωk,` and αk,` as before.
Two other families of invariant forms we will need are

a2,0 = dx1 ∧ dx2, a1,1 = dx1⊗ dy2− dx2⊗ dy1, a0,2 = dy1 ∧ dy2

and

w1,0 = (y2−x2)dx1−(y1−x1)dx2, w0,1 = (y2−x2)dy1−(y1−x1)dy2.

Finally, let

T1,1 = w1,0 ⊗ w0,1

= (y2 − x2)2dx1 ⊗ dy1 − (y1 − x1)(y2 − x2)(dx1 ⊗ dy2 + dx2 ⊗ dy1)

+ (y1 − x1)2dx2 ⊗ dy2
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The Key Lemma

Let1

Φ1,1 = F (σ, τ)(ω1,1 + T1,1)

and
Ψ2,0 = F (σ, τ)ω2,0 Ψ0,2 = −F (σ, τ)ω0,2.

We want to choose F so that

dxΦ1,1 = dyΨ2,0 and dyΦ1,1 = dxΨ0,2.

A calculation yields that we need

2σFσ + τFτ + 3F = 0.

And this is a PDE that we can solve!

1The form of Φ1,1 given here comes post facto, we began by considering a
more general form for Φ1,1, namely Fω1,1 + GT1,1 + Ha1,1, and we learned
that we could choose F = G and H = 0.
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Solutions

We need a solution that is valid for σ ≥ 0 and all τ , and which
becomes singular precisely when σ = τ = 0, and behaves like
1/distance3 at the singularity. The general solution is

F (σ, τ) =
1

σ3/2
ϕ

(
τ√
σ

)
for an arbitrary function ϕ of one variable.

Solutions which have the proper singularity are:

F (σ, τ) =
C

(Aσ + Bτ2)3/2
,

which comes from choosing ϕ(x) = C/(A + Bx2)3/2.

Since the distance function behaves like
√
σ + τ2 near σ = τ = 0,

we choose A = B = 1.
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Almost there

So our candidate for the linking form on the Heisenberg group is

Φ1,1 =
C

(σ + τ2)3/2
(ω1,1 + T1,1).

To determine C , we need only calculate a single example since we
know that the linking formula we obtain is link-homotopy
invariant. Let K be the circle given by x(s) = (cos s, sin s, 0) for
s ∈ [0, 2π), and let L be the square given in pieces by

y(t) = (0, 0, t) for −M ≤ t < M
= (t −M, 0,M) for M ≤ t < 3M
= (2M, 0, 4M − t) for 3M ≤ t < 5M
= (7M − t, 0,−M) for 5M ≤ t < 7M

It is easy to show that the contribution to the linking integral from
the latter three pieces approach zero as M →∞, so the linking
number of K and L (which is 1) is given by the limit of the linking
integral over K× the first segment as M →∞.
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The result

Theorem (with Matt Klein and Paul Gallagher)

If K and L are disjoint closed curves in H, then

Link(K , L) =

ˆ ˆ
S1×S1

X∗Φ1,1,

where

Φ1,1 = − 1

4π

ω1,1 + T1,1

(σ + τ2)3/2
,

The differential form Φ1,1 is invariant under isometries of H.
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