Linking integrals in three-dimensional geometries

D. DeTurck

University of Pennsylvania

March 7, 2014

Gauss linking integral

Carl Friedrich Gauss, in a half-page paper dated January 22, 1833, gave an integral formula for the linking number in Euclidean 3-space,

$$\operatorname{Link}(K_1, K_2) = \int_{K_1 \times K_2} \frac{d\mathbf{x}}{ds} \times \frac{d\mathbf{y}}{dt} \cdot \frac{\mathbf{x} - \mathbf{y}}{4\pi |\mathbf{x} - \mathbf{y}|^3} \, ds \, dt.$$

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Our goal is to define geometrically natural linking integrals for each of the eight homogeneous three-dimensional geometries

$$\mathbb{R}^3$$
, S^3 , H^3 , $S^2 \times \mathbb{R}$, $H^2 \times \mathbb{R}$
Nil, Sol, $SL(2, \mathbb{R})$

and at least some of their higher-dimensional generalizations. "Geometrically natural" in this context means that the integrands should be invariant under orientation-preserving isometries of the ambient spaces.

Another expression for the Gauss integral

Another way to write Gauss's formula is to define the double-form

$$\Phi_{1,1}(\mathbf{x},\mathbf{y}) = rac{\omega_{1,1}}{4\pi |\mathbf{x}-\mathbf{y}|^3}$$

on $\mathbb{R}^3\times\mathbb{R}^3,$ where

$$egin{aligned} &\omega_{1,1} = (y_1 - x_1)(dx_2 \otimes dy_3 - dx_3 \otimes dy_2) + (y_2 - x_2)(dx_3 \otimes dy_1 - dx_1 \otimes dy_3) \ &+ (y_3 - x_3)(dx_1 \otimes dy_2 - dx_2 \otimes dy_1). \end{aligned}$$

Thinking of the curves K_1 and K_2 as maps from S^1 into \mathbb{R}^3 , we define

$$\operatorname{Link}(K_1,K_2) = \iint_{S^1 \times S^1} X^* \Phi_{1,1}$$

where $\mathbf{X} = (\mathbf{x}, \mathbf{y})$ is the product mapping.

Double forms

- A *double-form* is a differential form on $M \times M$ which can be viewed either as a differential form on the first factor with coefficients being differential forms on the second factor, or vice versa.
- A (p, q)-form has of degree p over the first M factor and of degree q over the second. For example, a (2, 1)-form on ℝ³ × ℝ³ can be expressed as:

$$f(\mathbf{x},\mathbf{y})dx_2 \wedge dx_3 \otimes dy_1 + \cdots$$

and so on for nine terms.

For such forms, we have exterior derivatives d_x and d_y which commute with each other and have other standard properties such as d²_x = d²_y = 0, etc.

We wish to calculate the linking number of K and L via an integral of the form

$$\operatorname{Link}(K, L) = \int_{K \times L} \Phi_{1,1}(\mathbf{x}, \mathbf{y}),$$

where $\mathbf{x} \in K$ and $\mathbf{y} \in L$ and $\Phi_{1,1}$ is an appropriately-chosen isometry-invariant (1,1)-form on $(M) \times (M)$. The form $\Phi_{1,1}$ will be singular along the diagonal Δ of $(M) \times (M)$, but will be smooth otherwise.

Link-homotopy invariance

If there is a (2,0)-form $\Psi_{2,0}(\mathbf{x}, \mathbf{y})$ having the property that $d_{\mathbf{y}}\Psi_{2,0} = d_{\mathbf{x}}\Phi_{1,1}$ as (2,1)-forms on $M \times M) \setminus \Delta$, define the ordinary 1-form

$$\Omega_1(\mathbf{x}) = \int_L \Phi_{1,1}(\mathbf{x},\mathbf{y})$$

on $M \setminus L$ by integrating $\Phi_{1,1}$ over the curve L for each $\mathbf{x} \notin L$. Then we will have

$$d_{\mathbf{x}}\Omega_{1} = d_{\mathbf{x}} \int_{L} \Phi_{1,1}(\mathbf{x}, \mathbf{y}) = \int_{L} d_{\mathbf{x}} \Phi_{1,1}(\mathbf{x}, \mathbf{y}) = \int_{L} d_{\mathbf{y}} \Psi_{2,0}(\mathbf{x}, \mathbf{y}) = 0,$$

by Stokes's Theorem. So Ω_{1} is a closed 1-form (in \mathbf{x}) on $M \setminus L$,

and the value of

$$\int_{\mathcal{K}} \Omega_1(\mathbf{x}) = \int_{\mathcal{K} \times \mathcal{L}} \Phi_{1,1}(\mathbf{x}, \mathbf{y}) = \operatorname{Link}(\mathcal{K}, \mathcal{L})$$

depends only on the homology class of K within $M \setminus L$, so K can be deformed without affecting the value of the linking integral as long as K never meets L.

Likewise, if there is a (0,2)-form Ψ_{0,2}(**x**, **y**) having the property that d_xΨ_{0,2} = d_yΦ_{1,1} as (1,2)-forms on (M × M) \ Δ we can deform L as long as it never meets K and not affect the value of the linking integral.

- Likewise, if there is a (0,2)-form Ψ_{0,2}(**x**, **y**) having the property that d_xΨ_{0,2} = d_yΦ_{1,1} as (1,2)-forms on (M × M) \ Δ we can deform L as long as it never meets K and not affect the value of the linking integral.
- Our goal will be to produce isometry-invariant forms $\Phi_{1,1}$, $\Psi_{2,0}$ and $\Psi_{0,2}$ and to show that they satisfy the differential equations $d_{\mathbf{y}}\Psi_{2,0} = d_{\mathbf{x}}\Phi_{1,1}$ and $d_{\mathbf{x}}\Psi_{0,2} = d_{\mathbf{y}}\Phi_{1,1}$.

\mathbb{R}^n , S^n , H^n

Write $\mathbf{x} = (x_0, x_1, \dots, x_n)$ and $\mathbf{y} = (y_0, y_1, \dots, y_n)$ for points in \mathbb{R}^{n+1} , and $\langle \mathbf{x}, \mathbf{y} \rangle_{\pm}$ for the inner product on \mathbb{R}^{n+1} given by

$$\langle \mathbf{x}, \mathbf{y} \rangle_{\pm} = x_0 y_0 \pm (x_1 y_1 + x_2 y_2 + \cdots + x_n y_n).$$

We will then view $S^n \subset \mathbb{R}^{n+1}$ as

$$\mathcal{S}^{n} = \{ \mathbf{x} \in \mathbb{R}^{n+1} \mid \left< \mathbf{x} \,, \, \mathbf{x} \right>_{+} = 1 \},$$

 $H^n \subset \mathbb{R}^{n+1}$ as

$$H^n = \{ \mathbf{x} \in \mathbb{R}^{n+1} \mid \langle \mathbf{x}, \mathbf{x} \rangle_{-} = 1, \ x_0 > 0 \},$$

and $\mathbb{R}^n \subset \mathbb{R}^{n+1}$ as

$$\mathbb{R}^n = \{ \mathbf{x} \in \mathbb{R}^{n+1} \mid x_0 = 1 \}.$$

b 4 3 b 4 3 b

There are natural group actions on \mathbb{R}^{n+1} that restrict to groups of isometries on S^n , H^n and \mathbb{R}^n , namely the standard actions of SO(n+1), $SO_+(1,n)$ and E(n) respectively, where E(n) is the group of Euclidean motions of \mathbb{R}^n . An element of E(n) is given by the matrix

$$\begin{bmatrix} 1 & \mathbf{0} \\ \mathbf{v} & R \end{bmatrix},$$

where $R \in SO(n)$ and $\mathbf{v} \in \mathbb{R}^n$, so this matrix rotates \mathbb{R}^n according to the matrix R and then translates by \mathbf{v} .

Let **x** and **y** be two points in \mathbb{R}^{n+1} . For each k and ℓ satisfying $k + \ell = n - 1$, define a differential form $\omega_{k,\ell}$ as follows: For $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k \in T_{\mathbf{x}} \mathbb{R}^{n+1}$ and $\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_\ell \in T_{\mathbf{y}} \mathbb{R}^{n+1}$, $\omega_{k,\ell}(\mathbf{x}, \mathbf{y}; \mathbf{v}_1, \dots, \mathbf{v}_k; \mathbf{w}_1, \dots, \mathbf{w}_\ell) = \|\mathbf{x}, \mathbf{y}, \mathbf{v}_1, \dots, \mathbf{v}_k, \mathbf{w}_1, \dots, \mathbf{w}_\ell\|$.

Formally think of $\omega_{k,\ell}$ as the determinant

$$\frac{1}{k!\ell!} \|\mathbf{x}, \mathbf{y}, d\mathbf{x}, \dots, d\mathbf{x}, d\mathbf{y}, \dots, d\mathbf{y}\|$$

More forms

Two other families of forms for $k + \ell = n$:

$$\alpha_{k,\ell}(\mathbf{x},\mathbf{y};\mathbf{v}_1,\ldots,\mathbf{v}_k;\mathbf{w}_1,\ldots,\mathbf{w}_\ell) = \|\mathbf{x},\mathbf{v}_1,\ldots,\mathbf{v}_k,\mathbf{w}_1,\ldots,\mathbf{w}_\ell\|,$$

$$\beta_{k,\ell}(\mathbf{x},\mathbf{y};\mathbf{v}_1,\ldots,\mathbf{v}_k;\mathbf{w}_1,\ldots,\mathbf{w}_\ell) = \|\mathbf{y},\mathbf{v}_1,\ldots,\mathbf{v}_k,\mathbf{w}_1,\ldots,\mathbf{w}_\ell\|.$$

Forms restrict in a natural way to M, are invariant under the action of G. Also write:

$$\alpha_{k,\ell} = \frac{1}{k!\ell!} \|\mathbf{x}, d\mathbf{x}, \dots, d\mathbf{x}, d\mathbf{y}, \dots, d\mathbf{y}\|$$
$$\beta_{k,\ell} = \frac{1}{k!\ell!} \|\mathbf{y}, d\mathbf{x}, \dots, d\mathbf{x}, d\mathbf{y}, \dots, d\mathbf{y}\|.$$

Define exterior differential operators, d_x and d_y . Check that

$$d_{\mathbf{x}}\omega_{k,\ell} = \frac{1}{k!\ell!} \|d\mathbf{x}, \mathbf{y}, d\mathbf{x}, \dots, d\mathbf{x}, d\mathbf{y}, \dots, d\mathbf{y}\| = -(k+1)\beta_{k+1,\ell}$$

and

$$d_{\mathbf{y}}\omega_{k,\ell} = \frac{1}{k!\ell!} \|\mathbf{x}, d\mathbf{y}, d\mathbf{x}, \dots, d\mathbf{x}, d\mathbf{y}, \dots, d\mathbf{y}\| = (-1)^k (\ell+1)\alpha_{k,\ell+1}.$$

- Let σ = σ(x, y) = ⟨x, y⟩₊. The geodesic distance α between two points x and y on Sⁿ is α = arccos σ.
- Likewise, if $\sigma = \langle \mathbf{x}, \mathbf{y} \rangle_{-}$, the geodesic distance α between two points \mathbf{x} and \mathbf{y} on H^{n} is $\alpha = \arccos \sigma$.
- And of course the distance between two points **x** and **y** on \mathbb{R}^n is $\alpha = ((\mathbf{y} \mathbf{x}) \cdot (\mathbf{y} \mathbf{x}))^{1/2}$ and we let $\sigma = \frac{1}{2}(\mathbf{y} \mathbf{x}) \cdot (\mathbf{y} \mathbf{x})$ in this case.

To construct linking integrands, need an identity of the form:

$$d_{\mathbf{x}}[\varphi(\sigma)\omega_{1,1}] = d_{\mathbf{y}}[\psi(\sigma)\omega_{2,0}],$$

where σ is a function of the distance $\alpha(\mathbf{x}, \mathbf{y})$ between \mathbf{x} and \mathbf{y} . On S^3 and H^3 , use $\sigma = \langle \mathbf{x}, \mathbf{y} \rangle_{\pm}$, so that $\sigma = \cos \alpha$ and $\sigma = \cosh \alpha$ respectively.

On S^3 (and H^3), we have

$$d_{\mathsf{x}}[\varphi(\sigma)\omega_{1,1}] = \varphi'(\sigma)\left[\alpha_{2,1} - \sigma\beta_{2,1}\right] - 2\varphi(\sigma)\beta_{2,1}$$

and

$$d_{\mathbf{y}}[\psi(\sigma)\omega_{2,0}] = -\psi'(\sigma)\left[\beta_{2,1} - \sigma\alpha_{2,1}\right] + \psi(\sigma)\alpha_{2,1}.$$

Differential equations for φ and ψ

Because $\alpha_{2,1}$ and $\beta_{2,1}$ are independent we need the coefficients of both to be equal for these quantities to be equal. So φ and ψ must satisfy:

$$\varphi'(\sigma) - \sigma \psi'(\sigma) - \psi(\sigma) = 0$$

$$\sigma \varphi'(\sigma) + 2\varphi(\sigma) - \psi'(\sigma) = 0.$$

Derive that φ satisfies the second-order equation

$$(1-\sigma^2)\varphi''-5\sigma\varphi'-4\varphi=0. \tag{(*)}$$

Likewise

$$(1-\sigma^2)\psi''-5\sigma\psi'-3\psi=0.$$

Thus we can find functions ψ and χ so that

$$d_{\mathbf{x}}[\varphi\omega_{1,1}] = d_{\mathbf{y}}[\psi\omega_{2,0}] \qquad \text{and} \qquad d_{\mathbf{y}}[\varphi\omega_{1,1}] = d_{\mathbf{x}}[\chi\omega_{0,2}].$$

We refer to this fact as the Key Lemma.

On \mathbb{R}^3 the differential equation for $\varphi(\sigma)$ analogous to (*) is:

 $2\sigma arphi'' + 5arphi' = 0$ which has general solution $arphi(\sigma) = rac{C_1}{\sigma^{3/2}} + C_2.$

We want φ to decay to zero when $\sigma \to \infty$, so $C_2 = 0$.

By considering a single nontrivial example, we get that $C_1 = 1/\operatorname{vol}(S^2)$ so

$$\operatorname{Link}(K,L) = \frac{1}{4\pi} \iint_{K \times L} \frac{\omega_{1,1}}{\sigma^{3/2}}$$

just as Gauss did.

16/32

On S^3 ,

$$arphi=c_1\,rac{\sigma}{(1-\sigma^2)^{3/2}}+c_2\,rac{\sqrt{1-\sigma^2}-\sigmarccos\sigma}{(1-\sigma^2)^{3/2}}.$$

We need

 $\lim_{\sigma\downarrow-1}\varphi(\sigma)$

to be finite, and considering a single non-trivial example (two orthogonal linked great circles), we conclude that

$$c_2=arphi(0)=rac{1}{4\pi^2} \quad ext{and} \quad c_1=rac{1}{4\pi}.$$

This determines the linking integral on S^3 .

Now consider $M = H^2 \times \mathbb{R}$, and write $\langle \mathbf{v}, \mathbf{w} \rangle$ rather than $\langle \mathbf{v}, \mathbf{w} \rangle_{-} = v_0 w_0 - v_1 w_1 - v_2 w_2$ for the Minkowski inner product on \mathbb{R}^3 .

View $H^2 \subset \mathbb{R}^3$ as the set $\{\overline{\mathbf{x}}(x_0, x_1, x_2) \mid \langle \overline{\mathbf{x}}, \overline{\mathbf{x}} \rangle = 1\}$. Write the induced inner product on H^2 as $\mathbf{v} \cdot \mathbf{w} = -\langle \overline{\mathbf{v}}, \overline{\mathbf{w}} \rangle$.

 $H^2 \times \mathbb{R}$ is diffeomorphic to \mathbb{R}^3 .

The connected component of the isometry group of $H^2 \times \mathbb{R}$ is the product of those of H^2 and \mathbb{R} , namely $G = SO_+(1,2) \times \mathbb{R}$.

Recall that $SO_+(1,2)$ is the three-dimensional *restricted Lorentz* group, i.e., the Lie group of transformations of \mathbb{R}^3 which preserve the indefinite inner product we are using (hence the 'O' and the '1,2'), and which both preserve the orientation of \mathbb{R}^3 (hence the 'S') and which independently preserve the orientation of space and the direction of "time" (i.e., of x_0 , hence the '+'). The \mathbb{R} factor of G acts by translation on the \mathbb{R} factor of $H^2 \times \mathbb{R}$.

The the isometry group acts transitively on $H^2 \times \mathbb{R}$, however, since the group is only 4-dimensional, it cannot act transitively on the unit tangent bundle of $H^2 \times \mathbb{R}$, which is 5-dimensional. The distance $D(\mathbf{x}, \mathbf{y})$ between two points \mathbf{x} and \mathbf{y} in $H^2 \times \mathbb{R}$ satisfies

$$D^2 = (\operatorname{arccosh} \langle \overline{\mathbf{x}} \, , \, \overline{\mathbf{y}} \rangle)^2 + (x_3 - y_3)^2.$$

On $H^2\times \mathbb{R},$ two independent isometry-invariant two-point functions are

$$\sigma(\mathbf{x},\mathbf{y}) = \langle \overline{\mathbf{x}} , \overline{\mathbf{y}} \rangle = x_0 y_0 - x_1 y_1 - x_2 y_2 \quad \text{and} \quad \tau(\mathbf{x},\mathbf{y}) = x_3 - y_3.$$

Any isometry-invariant two-point function can be expressed as $F(\sigma(\mathbf{x}, \mathbf{y}), \tau(\mathbf{x}, \mathbf{y}))$. For instance, the distance $D(\mathbf{x}, \mathbf{y})$ between the two points \mathbf{x} and \mathbf{y} on M satisfies $D^2 = (\operatorname{arccosh} \sigma)^2 + \tau^2$, as noted above.

Since $((H^2 \times \mathbb{R}) \times (H^2 \times \mathbb{R})) \setminus \Delta$ is simply connected, we have A necessary and sufficient condition for the integral

$$\int_{K\times L} \Phi_{1,2}$$

to be link-homotopy invariant (i.e., to remain unchanged under deformations of the simple closed curves K and L which keep K and L disjoint) is that $\Phi_{1,1}$ be smooth and

$$\textit{d}_{\textbf{y}}\textit{d}_{\textbf{x}}\Phi_{1,1}=0$$

on $((H^2 \times \mathbb{R}) \times (H^2 \times \mathbb{R})) \setminus \Delta$.

We assume that

$$\Phi_{1,1} = f(\sigma,\tau) \,\omega_{1,0} \otimes dy_3 + g(\sigma,\tau) \,dx_3 \otimes \omega_{0,1} + p(\sigma,\tau) \,\alpha_{1,1} + q(\sigma,\tau) \,\beta_{1,1},$$

where $\sigma = \langle \overline{\mathbf{x}}, \overline{\mathbf{y}} \rangle$ and $\tau = x_3 - y_3$ are the invariant functions on $(H^2 \times \mathbb{R}) \times (H^2 \times \mathbb{R})$. We calculate:

$$\begin{aligned} d_{\mathbf{y}}d_{\mathbf{x}}\Phi_{1,1} &= d_{\mathbf{y}}d_{\mathbf{x}}(f\,\omega_{1,0}\otimes dy_{3} + g\,dx_{3}\otimes \omega_{0,1} + p\,\alpha_{1,1} + q\,\beta_{1,1}) \\ &= \left((1 - \sigma^{2})f_{\sigma\sigma} - 4\sigma f_{\sigma} - 2f + \sigma\,p_{\sigma\tau} + 2p_{\tau} + q_{\sigma\tau}\right)\gamma_{2,1}\wedge dy_{3} \\ &+ \left((\sigma^{2} - 1)g_{\sigma\sigma} + 4\sigma g_{\sigma} + 2g + p_{\sigma\tau} + \sigma\,q_{\sigma\tau} + 2q_{\tau}\right)\gamma_{1,2}\wedge dx_{3} \\ &+ \left(\sigma f_{\sigma\tau} + f_{\tau} + g_{\sigma\tau} - p_{\tau\tau}\right)\alpha_{1,1}\wedge dx_{3}\wedge dy_{3} \\ &- \left(f_{\sigma\tau} + \sigma g_{\sigma\tau} + g_{\tau} + q_{\tau\tau}\right)\beta_{1,1}\wedge dx_{3}\wedge dy_{3}. \end{aligned}$$

3 1 4 3

From this we have

Let

$$\Phi_{1,1} = f \,\omega_{1,0} \otimes dy_3 + g \,dx_3 \otimes \omega_{0,1} + p \,\alpha_{1,1} + q \,\beta_{1,1}$$

In order for the linking integral to be link-homotopy invariant we need

$$0 = (1 - \sigma^{2})f_{\sigma\sigma} - 4\sigma f_{\sigma} - 2f + \sigma p_{\sigma\tau} + 2p_{\tau} + q_{\sigma\tau}$$

$$0 = (1 - \sigma^{2})g_{\sigma\sigma} - 4\sigma g_{\sigma} - 2g - p_{\sigma\tau} - \sigma q_{\sigma\tau} - 2q_{\tau}$$

$$0 = \sigma f_{\sigma\tau} + f_{\tau} + g_{\sigma\tau} - p_{\tau\tau}$$

$$0 = f_{\sigma\tau} + \sigma g_{\sigma\tau} + g_{\tau} + q_{\tau\tau}$$

on $((H^2 \times \mathbb{R}) \times (H^2 \times \mathbb{R})) \setminus \Delta$.

Geometric strategy for solving the system

If K is given by $\mathbf{x}(s)$ and L by $\mathbf{y}(t)$ then for each pair of points $\mathbf{x}(s), \mathbf{y}(t)$ we construct the unit "pointing" vectors $\mathbf{p}_{\mathbf{yx}}(s, t) \in T_{\mathbf{x}}(H^2 \times \mathbb{R})$ and $\mathbf{p}_{\mathbf{xy}}(s, t) \in T_{\mathbf{y}}(H^2 \times \mathbb{R})$ that point along the geodesic from $\mathbf{x}(s)$ to $\mathbf{y}(t)$ and from $\mathbf{y}(t)$ to $\mathbf{x}(s)$ respectively.

Calculate the projection of the area spanned by $\partial \mathbf{p_{yx}}/\partial s$ and $\partial \mathbf{p_{yx}}/\partial t$ onto the tangent plane at $\mathbf{p_{yx}}$ to the unit sphere in $T_{\mathbf{x}}(H^2 \times \mathbb{R})$, and the projection of the area spanned by $\partial \mathbf{p_{xy}}/\partial t$ and $\partial \mathbf{p_{xy}}/\partial s$ onto the tangent plane at $\mathbf{p_{xy}}$ to the unit sphere in $T_{\mathbf{y}}(H^2 \times \mathbb{R})$.

The average of these gives the value of our linking integral candidate evaluated at $(\mathbf{x}, \mathbf{y}) \in (H^2 \times \mathbb{R}) \times (H^2 \times \mathbb{R})$ on the vectors $d\mathbf{x}/ds \in T_{\mathbf{x}}(H^2 \times \mathbb{R})$ and $d\mathbf{y}/dt \in T_{\mathbf{y}}(H^2 \times \mathbb{R})$.

It turns out that the (1,1)-form $\Phi_{1,1}$ obtained in this way is the correct linking integrand on $H^2 \times \mathbb{R}$.

Theorem (with Matt Klein and Lianxin He)

The linking form on $H^2\times \mathbb{R}$ is

$$\Phi_{1,1} = \frac{1}{8\pi} \left(\frac{(\operatorname{arccosh} \sigma)^2}{((\operatorname{arccosh} \sigma)^2 + \tau^2)^{3/2} (\sigma - 1)} (dx_3 \otimes \omega_{0,1} - \omega_{1,0} \otimes dy_3) + \frac{\tau \operatorname{arccosh} \sigma}{((\operatorname{arccosh} \sigma)^2 + \tau^2)^{3/2} \sqrt{\sigma^2 - 1}} (\alpha_{1,1} + \beta_{1,1}) \right)$$

A B > A B >

The usual way to think of the Heisenberg group is as the set of 3-by-3 matrices

$$H = \left\{ \left[\begin{array}{rrr} 1 & p & r \\ 0 & 1 & q \\ 0 & 0 & 1 \end{array} \right] \mid p, q, r \in \mathbb{R} \right\},$$

but we will use a slightly different representation via 4-by-4 matrices as follows:

$$H = \left\{ \left[\begin{array}{rrrr} 1 & a & b & c \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & -a \\ 0 & 0 & 0 & 1 \end{array} \right] \mid a, b, c \in \mathbb{R} \right\}$$

For the left-invariant metric on the Heisenberg group, the isometry group is the semi-direct product of the group of left translations with the one-dimensional group of rotations in the first two coordinates. If we view H as the subset of \mathbb{R}^4 given by $(x_1, x_2, x_3, 1)$, then all isometries can be viewed as linear transformations of \mathbb{R}^4 which preserve the hyperplane $x_4 = 1$.

If *F* is any function of two points $\mathbf{x} = (x_1, x_2, x_3, 1)$ and $\mathbf{y} = (y_1, y_2, y_3, 1)$ invariant under the action of the isometry group, then the derivative of *F* is zero along Killing fields. Obtain that any isometry-invariant two-point function on *H* is dependent upon the "common sense" two-dimensional distance function

$$\sigma = (x_1 - y_1)^2 + (x_2 - y_2)^2$$
 and $au = y_3 - x_3 - x_1y_2 + x_2y_1.$

Basic differential forms

Since the isometries are unimodular transformations of \mathbb{R}^4 , we can use the same basic differential forms $\omega_{k,\ell}$ and $\alpha_{k,\ell}$ as before. Two other families of invariant forms we will need are

$$a_{2,0} = dx_1 \wedge dx_2, \quad a_{1,1} = dx_1 \otimes dy_2 - dx_2 \otimes dy_1, \quad a_{0,2} = dy_1 \wedge dy_2$$

and

$$w_{1,0} = (y_2 - x_2)dx_1 - (y_1 - x_1)dx_2,$$
 $w_{0,1} = (y_2 - x_2)dy_1 - (y_1 - x_1)dy_2.$
Finally, let

$$T_{1,1} = w_{1,0} \otimes w_{0,1}$$

= $(y_2 - x_2)^2 dx_1 \otimes dy_1 - (y_1 - x_1)(y_2 - x_2)(dx_1 \otimes dy_2 + dx_2 \otimes dy_1)$
+ $(y_1 - x_1)^2 dx_2 \otimes dy_2$

28 / 32

The Key Lemma

Let¹

$$\Phi_{1,1} = F(\sigma, \tau)(\omega_{1,1} + T_{1,1})$$

and

$$\Psi_{2,0} = F(\sigma,\tau)\omega_{2,0} \qquad \Psi_{0,2} = -F(\sigma,\tau)\omega_{0,2}.$$

We want to choose F so that

$$d_{\mathbf{x}}\Phi_{1,1} = d_{\mathbf{y}}\Psi_{2,0}$$
 and $d_{\mathbf{y}}\Phi_{1,1} = d_{\mathbf{x}}\Psi_{0,2}$.

A calculation yields that we need

$$2\sigma F_{\sigma} + \tau F_{\tau} + 3F = 0.$$

And this is a PDE that we can solve!

¹The form of $\Phi_{1,1}$ given here comes *post facto*, we began by considering a more general form for $\Phi_{1,1}$, namely $F\omega_{1,1} + GT_{1,1} + Ha_{1,1}$, and we learned that we could choose F = G and H = 0.

Solutions

We need a solution that is valid for $\sigma \ge 0$ and all τ , and which becomes singular precisely when $\sigma = \tau = 0$, and behaves like $1/distance^3$ at the singularity. The general solution is

$$F(\sigma, \tau) = rac{1}{\sigma^{3/2}} \varphi\left(rac{ au}{\sqrt{\sigma}}
ight)$$

for an arbitrary function φ of one variable.

Solutions which have the proper singularity are:

$$F(\sigma,\tau)=\frac{C}{(A\sigma+B\tau^2)^{3/2}},$$

which comes from choosing $\varphi(x) = C/(A + Bx^2)^{3/2}$.

Since the distance function behaves like $\sqrt{\sigma + \tau^2}$ near $\sigma = \tau = 0$, we choose A = B = 1.

Almost there

So our candidate for the linking form on the Heisenberg group is

$$\Phi_{1,1} = \frac{C}{(\sigma + \tau^2)^{3/2}} (\omega_{1,1} + T_{1,1}).$$

To determine *C*, we need only calculate a single example since we know that the linking formula we obtain is link-homotopy invariant. Let *K* be the circle given by $\mathbf{x}(s) = (\cos s, \sin s, 0)$ for $s \in [0, 2\pi)$, and let *L* be the square given in pieces by

$$\begin{aligned} \mathbf{y}(t) &= (0,0,t) & \text{for } -M \leq t < M \\ &= (t-M,0,M) & \text{for } M \leq t < 3M \\ &= (2M,0,4M-t) & \text{for } 3M \leq t < 5M \\ &= (7M-t,0,-M) & \text{for } 5M \leq t < 7M \end{aligned}$$

It is easy to show that the contribution to the linking integral from the latter three pieces approach zero as $M \to \infty$, so the linking number of K and L (which is 1) is given by the limit of the linking integral over $K \times$ the first segment as $M \to \infty$. Theorem (with Matt Klein and Paul Gallagher)

If K and L are disjoint closed curves in H, then

$$\operatorname{Link}(K,L) = \iint_{S^1 \times S^1} \mathbf{X}^* \Phi_{1,1},$$

where

$$\Phi_{1,1} = -rac{1}{4\pi} rac{\omega_{1,1} + T_{1,1}}{(\sigma + \tau^2)^{3/2}},$$

The differential form $\Phi_{1,1}$ is invariant under isometries of H.

< ∃ > < ∃ >