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Given a Riemannian manifold M that is compact and closed, how
many closed geodesics lie on M?

This is a problem for algebraic topology from the beginning:
Consider the fundamental groups of oriented surfaces. In the case that
the genus is greater than zero, the fundamental group is infinite, and
in each homotopy class, there is a closed geodesic.
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Let F denote a field.

The Gromoll-Meyer Theorem (1967). If M is a compact, closed,
manifold of dimension ≥ 2, and the set

{dimF Hi(ΛM;F) | i = 0, 1, 2, . . .}

is unbounded, then infinitely many closed geodesics lie on M in any
Riemannian metric.



There is a fibration:

ΩM - ΛM

M

ev1

?

Hence there is a Leray-Serre spectral sequence with
Ep,q

2
∼= Hp(M;F)⊗ Hq(ΩM;F) and converging to Hp+q(ΛM;F).

However, the path-loop fibration has the same E2-page and converges
to F. Hence, the target H∗(ΛM;F) lies somewhere between
H∗(M;F)⊗ H∗(ΩM;F) and F.
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Theorem of Sullivan and Vigué-Poirrier (1974). If X is a finite
CW-complex and the cohomology algebra H∗(X;Q) requires at least
two generators as an algebra, then the set
{dimQ Hi(ΛM;Q) | i = 0, 1, 2, . . .} is unbounded.



The Sullivan–Vigué-Poirrier theorem leaves out many manifolds.

A particular case: The Stiefel manifolds V2(R2k+1).

H∗(V2(R2k+1);Q) ∼= H∗(S4k−1;Q). And so the the condition on
number of algebra generators fails. However,
H∗(V2(R2k+1);F2) ∼= E(x2k, y2k−1), and so the manifold satisfies
having at least algebra generators over one field, F2.

It is a theorem of Borel that H∗(ΩV2(R2k+1);F2) ∼= F2[a2k−1, b2k−2]
and so it is the case that

{dimF2 Hi(ΩV2(R2k+1);F2) | i = 0, 1, 2, . . .}

is unbounded.
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Does this condition hold more generally, that is, suppose H∗(M;Fp)
requires at least two generators as an algebra. Does it follow that

{dimFp Hi(ΩM;Fp) | i = 0, 1, 2, . . .}

is unbounded?

This would be a minimal condition for the Leray-Serre spectral
sequence to have any chance of computing enough homology of ΛM
to apply the Gromoll-Meyer theorem.

The answer is YES. And the result has several consequences.
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There is another version of the fibration for the free loop space, first
noticed perhaps by George Whitehead.

There is a pullback diagram:

ΛM - MI

M
?

∆

- M ×M

ev0×ev1

?

Over a field, the E2-page of the Eilenberg-Moore spectral sequence is
given by

Ep,q
2
∼= Torp,q

H∗(M)⊗H∗(M)(H∗(M),H∗(M)).



There is another version of the fibration for the free loop space, first
noticed perhaps by George Whitehead.

There is a pullback diagram:

ΛM - MI

M
?

∆

- M ×M

ev0×ev1

?

Over a field, the E2-page of the Eilenberg-Moore spectral sequence is
given by

Ep,q
2
∼= Torp,q

H∗(M)⊗H∗(M)(H∗(M),H∗(M)).



There is another version of the fibration for the free loop space, first
noticed perhaps by George Whitehead.

There is a pullback diagram:

ΛM - MI

M
?

∆

- M ×M

ev0×ev1

?

Over a field, the E2-page of the Eilenberg-Moore spectral sequence is
given by

Ep,q
2
∼= Torp,q

H∗(M)⊗H∗(M)(H∗(M),H∗(M)).



The action of H∗(M)⊗ H∗(M) on H∗(M) is given by a flip and the
cup product. To the educated ring theorist, one recognizes

E2 ∼= HH∗(H∗(M),H∗(M))

the Hochschild homology of the cohomology ring of M.

In the 1960’s, Murray Gerstenhaber proved that HH∗(A) enjoys extra
structure: It is a graded commutative algebra and, HH∗+1(A) is a
graded Lie algebra, satisfying

[a, bc] = [a, b]c + (−1)(|a|−1)|b|b[a, c].

In our case H∗(ΛM; k) ∼= HH∗(C∗(M; k),C∗(M; k)). Hence,
somehow there ought to be a product and Lie bracket on H∗(ΛM; k).
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Enter string topology!

Let M be of dimension d. Define the string topology of M to be

H∗(ΛM) = H∗+d(ΛM;F).

The idea is due to M. Chas and D. Sullivan: Suppose α : ∆p → ΛM
and β : ∆q → ΛM are singular simplices in ΛM. Take the composite

∆p ×∆q → ΛM × ΛM
ev1×ev1−→ M ×M

and suppose that it is transverse to the diagonal.

At each point where ev1 ◦ α meets ev1 ◦ β you have two loops at
α(1) = β(1). Form the loop product there. This gives a chain

α ◦ β ∈ Cp+q−d(ΛM).
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Theorem. The chain map Cp(ΛM)⊗ Cq(ΛM)
◦−→Cp+q−d(ΛM)

induces an associative, commutative algebra structure on H∗(ΛM).

Is it a homotopy invariant?

Cohen-Jones: Let −TM denote the virtual bundle giving the inverse
of the tangent bundle to M in K-theory. Let M−TM denote the
associated Thom spectrum and (ΛM)−TM = ev∗1(−TM).

1) (ΛM)−TM is a homotopy commutative ring spectrum with unit.

2) The product on (ΛM)−TM realizes ◦ after applying the Thom
isomorphism

Hq((ΛM)−TM) ∼= Hq+d(ΛM) = Hq(ΛM).
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Theorem (Cohen-Jones-Yan). If M is an oriented, simply-connected
manifold, then there is a 2nd quadrant spectral sequence of algebras
{Er

p,q, d
r; p ≤ 0, q ≥ 0} such that

1) Er
∗,∗ is a bigraded algebra with dr : Er

∗,∗ → Er
∗−r,∗+r−1, a

derivation for each r ≥ 1.
2) The spectral sequence converges to H∗(ΛM) as algebras.
3) For m, n ≥ 0, E2

−m,n
∼= Hm(M; Hn(ΩM)) as algebras, with the

product on H∗(M) given by the cup product, and the product on
H∗(ΩM) given by the Pontryagin product.
4) The spectral sequence is natural with respect to smooth maps.



A classical argument: Consider the CJY spectral sequence for
H∗(ΛV2(R2k+1);F2).

Since H∗(ΩV2(R2k+1); F2) ∼= F2[a2k−1, b2k−2], we can consider the differentials on
each sub-polynomial algebra F2[a2k−1] and F2[b2k−2].

Notice that dr(x2) = 0 because the algebra is commutative and dr is a derivation.

Thus, we can apply successive differentials that are zero on successive squares, and

hence leave a polynomial algebra on a pair of generators of the form a2j
and b2k

. But

a polynomial algebra on two generators has unbounded dimensions. Thus, so does

H∗(ΛM; F2).

This argument generalizes depending on the structure of H∗(ΩM;Fp).
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There is the dichotomy of Felix, Halperin, Lemaire and Thomas:

A manifold M is elliptic mod p if there is an integer N = N(p) and a
constant C = C(p) such that

dimFp Hr(ΩM;Fp) ≤ CrN , r = 1, 2, . . .

A manifold M is hyperbolic mod p if there is a constant K > 1 such
that

n∑
i=0

dimFp Hi(ΩM;Fp) ≥ K
√

n, for n large enough.

Notice that a compact, oriented manifold M has finite LS-category
and the homotopy type of a finite complex, which are assumptions for
an elliptic space.
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The elliptic case
Theorem (FHT 1991). If M is an elliptic manifold, then H∗(ΩM;Fp)
is an elliptic Hopf algebra, and so it is a finitely generated module
over a central sub-Hopf algebra which is a polynomial algebra in
finitely many indeterminates.

In fact, Γ = H∗(ΩM;Fp) being elliptic may be written as a K-module
as K ⊗ G//K where K is polynomial and G//K is finite dimensional.
The growth of dimensions when H∗(M;Fp) requires at least two
algebra generators implies that K is a polynomial algebra on at least
two generators, and hence, the classical argument produces the growth
in H∗(ΛM) desired to deduce infinitely many closed geodesics.
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