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Herman Gluck                                                 Millersville, October 4, 2013 
 

LIPSCHITZ MINIMALITY 
of  

GROUP MULTIPLICATION on the THREE-SPHERE 
 

                    
                                     Haomin Wen 



 2 

 

 

The most beautiful maps  

between beautiful spaces 

ought to be optimal 

in some specific mathematical sense, 

and then characterized by that optimality. 
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Haomin's Theorem.  The group multiplication map 

m: S
3
  S

3
    S

3
  is a Lipschitz constant minimizer 

in its homotopy class, uniquely so up to composition 

with isometries of domain and range.  

 

Remark.  The above theorem is easy (and fun) to 

prove for  S
1
 . 

 

Haomin's proof for  S
3
  also works for the multiplication 

map  m: S
7
  S

7
    S

7
  of unit Cayley numbers. 
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Lipschitz maps and constants. 

 

A map  f: X  Y  between metric spaces is a  

Lipschitz map if there is a constant  C  such that 

d(f(x), f(x'))    C d(x, x')  for all  x, x'  in  X .   

 

The smallest such constant  C  is called the  

Lipschitz constant of  f . 

 

There always exists a Lipschitz constant minimizer  

in the homotopy class of any Lipschitz map between 

compact metric spaces (by Arzela-Ascoli). 
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Background to Haomin's theorem.  Consider the Hopf 

fibrations of round spheres by parallel great subspheres: 
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with the nonassociativity of the Cayley numbers 

responsible for the truncation of the third series. 

 

First one discovered by Hopf in 1931, rest by him in 1935. 

 

All Hopf projections have Lipschitz constant  1  when the  

base spaces are given the Riemannian submersion metric. 
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Hopf fibration of 3-sphere by great circles 
Lun-Yi Tsai     Charcoal and graphite on paper     2007 
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Thms (with Dennis DeTurck and Pete Storm, 2010). 
 
(1) Given a Hopf fibration of a round sphere by parallel 

great subspheres, the projection map to the base 

space is, up to isometries of domain and range, the 

unique Lipschitz constant minimizer in its homotopy 

class. 
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(2) When the fibres of a Hopf fibration are great circles, 

a unit vector field tangent to these circles is, up to 

isometries of domain and range, the unique Lipschitz 

constant minimizer in its homotopy class. 

 

            
                                    Pete Storm
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Tracing even further back... 

 

Theorem (with Wolfgang Ziller, 1986). 

On  S
3
 ,  the Hopf vector field is volume-minimizing 

in its homology class in the unit tangent bundle. 
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However ... (David Johnson, 1988). 

On  S
5
 ,  the Hopf vector field is not volume-minimizing 

in its homology class, not even a local minimum, though 

it is a critical "point" of the volume function. 
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We are HOPING that many beautiful maps...for example,  

Riem. submersions of compact homogeneous spaces... 

can be shown to be Lipschitz minimizers in their homotopy 

classes, unique up to composition with isometries of domain 

and range. 

 

The Hopf projections all have this feature. 

 

One more known instance.  The Stiefel projection 

V2R
4
    G2R

4
  is a Lipschitz constant minimizer in  

its homotopy class, unique up to composition with 

isometries of domain and range. 
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Remark.  Group multiplication  S
3
  S

3
    S

3
  is,  

up to scale, a Riemannian submersion of compact 

homogeneous spaces. 

 

 

In the following pages, we will display the architecture 

of Haomin's proof of his theorem, but give not details.
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Back to  S
3
  with a preliminary result. 

 

 (1) Group multiplication  S
3
  S

3
    S

3
  has  

  Lipschitz constant  =  2 . 

 

This is a matter of observation, which we tackle in a 

moment. 

 

 (2) Any map  S
3
  S

3
    S

3
  homotopic to this has 

  Lipschitz constant    2 . 
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(1)  Group mult  m: S
3
  S

3
  S

3
  has  Lip(m) = 2. 

 

Proof.  In a Lie group with bi-invariant metric,  

group mult near all pairs of points are isometric. 
 

Enough to show the differential  m* : R
3
  R

3
  R

3
 

has Lipschitz constant (= operator norm) 2. 
 

At  (identity, identity),  m*  =  addition in  R
3
 . 

 

The matrix  A  of addition is the 3  6 matrix  I | I . 
 

Lip(A)  =  ||A||op  = (largest eigenvalue of  A
T 

A) 
 

The eigenvalues of  A
T 

A  are computed to be   

0, 0, 0, 2, 2, 2 ,  completing the proof.
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Preliminaries to the proof of (2). 

 

Definitions.  A map  f : S
n
    S

n
  is said to be 

    even if  f ( x)  =  f (x)  for all  x  S
n
 ; 

    odd if  f ( x)  =  f (x)  for all  x  S
n
 . 

 

Easy exercise.  An even map  S
n
    S

n
  has even 

degree. 

 

Theorem (Borsuk).  An odd map  S
n
    S

n
  has odd 

degree.  (For a proof, see Hatcher, "Algebraic Topology," 

pp. 174-176. 
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Corollary 1.  If  f : S
n
    S

n
  has even degree, then 

there is a pair of antipodal points  x  and  x  such that   

f (x)  =  f ( x) . 

 

Proof.  Suppose not.  Then homotope  f  by repulsion  

so that afterwards  f ( x)  =  f (x)  for every  x  in  S
n
 . 

 

                          
By Borsuk's Theorem, this implies that  f  has odd 

degree, contrary to assumption. 
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Corollary 2.  A degree-two map  f : S
n
    S

n
  must 

have  Lipschitz constant    2 . 

 

Proof.  By Corollary 1, there exists a pair of antipodal 

points  x  and  x  such that  f (x)  =  f ( x)  =  some y . 
 

Let  x'  be a point in  S
n
  such that  f (x')  =  y . 
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Then  d(x', x)    /2   or   d(x', x)    /2 , 

yet  d(f (x'), f (x))  =  d(f (x'), f ( x))  =   . 
 

Hence  Lip(f )    2 .   



 19

Proof of (2): Any map  f : S
3
  S

3
    S

3
  which is 

homotopic to the multiplication map  m: S
3
  S

3
    S

3
  

has  Lip(f )  2 . 
 

The restriction of  m  to the diagonal   
 

(S
3
)  =  {(x, x): x  S

3
}    S

3
 

 

has degree 2 ,  so the same must hold for  f . 
 

Since  (S
3
)  is a round 3-sphere of radius  2 ,  it 

follows from Corollary 2 that  Lip(f | (S3))    2 . 
 

Hence  Lip(f )    2 ,  as claimed. 
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Remark. At this point, we know that the multiplication 

map 

m: S
3
  S

3
    S

3 

 

has the minimum possible Lipschitz constant of  2   

in its homotopy class. 

 

The issue now is to show that the only other maps in 

this homotopy class with Lipschitz constant  2  are  

the compositions of  m  with isometries of domain and 

range. 
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The four steps of Haomin's proof of uniqueness. 

 

To start, let  (x1, y1)  and  (x2, y2)  be two pts in  S
3
  S

3
 

which have the same image in  S
3
  under  f . 
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Step 1.  Haomin proves the following inequalities: 

 

   (2     d(x1 , x2))
2
  +  d(y1 , y2)

2
    2

2
  

 

   (2     d(y1 , y2))
2
  +  d(x1 , x2)

2
    2

2
 , 

 

which are at the heart of his argument. 
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We graph both inequalities together in the figure below, 

letting  x = d(x1 , x2)  and  y = d(y1 , y2) , both in  [0, ] . 

 

                                             
 

 

The shaded region above consists of the points  (x, y)  

satisfying both inequalities. 
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Step 2.  Haomin uses these inequalities to show that 

each inverse image  f
 –1

(a)  is the graph of some 

isometry  ha: S
3
    S

3
 ,  and hence appears inside   

S
3
  S

3
  as a diagonal 3-sphere.   
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Step 3.  Haomin shows that these diagonal 3-spheres 

are parallel to one another. 
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Step 4. Haomin uses classical results to finish the proof. 

 

Proposition (Y-C Wong 1961, Joseph Wolf 1963). 

Any fibration of an open set on  S
3
  S

3
  by parallel 

great 3-spheres extends to a fibration of all of  S
7
( 2) 

by parallel great 3-spheres, and any two of these are 

isometric to one another. 

 

It follows that any two fibrations of  S
3
  S

3
  by parallel 

great 3-spheres can be taken, one to the other, by an 

isometry of  S
3
  S

3
 . 
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Perform this isometry, so that now the fibres of 

f: S
3
  S

3
    S

3
  coincide with the fibres of the 

multiplication map  m: S
3
  S

3
    S

3
 . 

 

Since  f  and  m  are now both Riemannian 

submersions (up to scale) of  S
3
  S

3
    S

3
 

having the same fibres, the map of  S
3
  to itself 

which takes  f(x, y)  to  m(x, y)  is an isometry. 

 

This completes the proof of Haomin's theorem. 
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What's next? 

 

Test question #1: Try to show that the bundle map 

 

SO(n)    S
n–1

 

 

is a Lipschitz constant minimizer in its homotopy class, 

unique up to composition with isometries of domain 

and range. 

 

This can be shown for  n  4  on the basis of known 

results, so the first challenge is for  n = 5 . 
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Test question #2: Show that the projection map 

 

SU(3)    S
5
 

 

is a Lipschitz constant minimizer in its homotopy class, 

unique up to composition with isometries of domain 

and range. 
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Test question #3:  Show that the projection map 
of the Stiefel bundle 
 

V2R
n
    G2R

n 

 

is a Lipschitz constant minimizer in its homotopy class, 

unique up to composition with isometries of domain 

and range. 

 

This is also known for  n  4 ,  so the first challenge 

is for  n = 5 . 
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Test question #4: Geometry of real Grassmann mflds. 
 
Let  GkR

n
 = set of oriented k-planes thru origin in  R

n
 . 

 
GkR

n
  =  SO(n) / (SO(k)  SO(n k)) = k(n  k) dim'l mfld.  

 
  G5R

6
    G5R

7
    G5R

8
    G5R

9
    G5R

10
   ... 

                                                      
  G4R

5
    G4R

6
    G4R

7
    G4R

8
    G4R

9
    ... 

                                                      
  G3R

4
    G3R

5
    G3R

6
    G3R

7
    G3R

8
    ... 

                                                      
  G2R

3
    G2R

4
    G2R

5
    G2R

6
    G2R

7
    ... 

                                                      
  G1R

2
    G1R

3
    G1R

4
    G1R

5
    G1R

6
    ... 
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        G3R
4
    G3R

5
    G3R

6
 

                                          
      G2R

3
    G2R

4
    G2R

5
 

                                 
      G1R

2
    G1R

3
    G1R

4
  

 
The 9-dim'l Grassmann manifold  G3R

6
  has the rational 

homotopy type of  S
4
  S

5
 ,  and the subGrassmannian  

G2R
4
  generates its 4-dim'l homology. 

 
But (with Dana Mackenzie and Frank Morgan, 1995) ...   
G2R

4
  is only a local volume-minimizer in its homology 

class in  G3R
6
 ,  not a global volume-minimizer. 

 
Test question #4.  Is the inclusion of  G2R

4
  in  G3R

6
   

a Lipschitz minimizer in its homotopy class? 


