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Classical and quantum computers

bitstring −→ classical
processor −→ bitstring

quantum state −→
quantum
processor −→

measurement
−→ bitstring
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Classical computer, more detail

bitstring −→ classical
processor −→ bitstring

x ∈ {0, 1}n −→
Boolean
function

f
−→ f (x)

x
f−→ y
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Quantum computer, more detail

quantum state −→
quantum
processor −→

measurement
−→ bitstring

complex vector∑
x∈{0,1}n

cxex −→ unitary
operator −→ ??? ⇝ x ∈ {0, 1}n

∑
x

cxex
U−→

∑
x

axex ⇝

x
with
prob.

|ax |2
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Comparison: classical vs quantum computers

classical: x
f−→ y

quantum:
∑

x cxex
U−→

∑
x axex ⇝

x
with
prob.

|ax |2

exponential speedup for the quantum processor

cost of quantum state preparation

cost of quantum circuit preparation

cost of readout

cost of error correction

The dream: processor speedup will outweigh the costs
The fine print: many qualifications, much commentary, non-trivial
controversy
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Efficient Circuit Design

“Circuit” = composition of unitary operators (LARGE)

“Gate” = unitary operator (SMALL)

Need standardized gates to build larger circuits

Some unitary gates are more expensive than others

Desired: small set of cheap, versatile gates that combine efficiently to
implement many circuits

“Universal Gate Set” = set of gates that be combined to approximate
any needed unitary

Natural Thing to Want

A universal gate set that optimizes a bunch of practical considerations
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Example gate: 1-qubit unitary

A state of a quantum bit (qubit) is a vector

[
α
β

]
= αe0 + βe1 ∈ C2

A 1-qubit unitary is simply at 2× 2 unitary matrix U

U =

[
a b
c d

]
acts on the state

[
α
β

]
= αe0 + βe1 by

[
α
β

]
U→

[
aα+ bβ
cα+ dβ

]

Circuit diagram for 1-qubit unitary

ψ U Uψ

Example: X =

[
0 1
1 0

]
(“Quantum NOT gate”)

αe0 + βe1 X βe0 + αe1
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Example gate: CNOT gate

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


αe00 + βe01 + γe10 + δe11

CNOT−→ αe00 + βe01 + δe10 + γe11

eiej = eij (eiej = ei ⊗ ej)

αe00 + βe01 + γe10 + δe11 = e0(αe0 + βe1) + e1(γe0 + δe1)

ejψ
CNOT−→ ejX

jψ

ej

CNOT

ej

ψ X jψ
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Controlled gates

For a 1-qubit unitary U , the controlled-U gate (CU) is

ej

CU

ej

ψ U jψ

CU =

U

CNOT =

X
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Controlled gates, cont’d

A universal gate set

The set of 1-qubit unitaries, together with the CNOT gate

Problem

Implement a controlled-U using only 1-qubit unitaries and CNOT

Unitary factorization that gives a solution

Given a 1-qubit unitary U, there exist 1-qubit unitaries A,B,C such that

U = AXBXC

Id = ABC

=
U C X B X A
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Rotations of R3

The rotation Rv,θ about the vector v by the angle θ

The rotation group

Rot(R3) = {Rv,θ : v ∈ R3, θ ∈ R}
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A good way to implement rotations

The quaternions H = R4 as real vector space

Let M =

{[
u v

−v∗ u∗

]
: u, v ∈ C

}
Easy exercise: M is a real algebra (closed under matrix mult.)

Use these identifications to put multiplication on H

H ↔ C2 ↔ M

(a, b, c , d) ↔ (a+ bi︸ ︷︷ ︸
u

, c + di︸ ︷︷ ︸
v

) ↔
[

u v
−v∗ u∗

]

1 = (1, 0, 0, 0) ↔
[
1 0
0 1

]
i = (0, 1, 0, 0) ↔

[
i 0
0 −i

]
j = (0, 0, 1, 0) ↔

[
0 1
−1 0

]
k = (0, 0, 0, 1) ↔

[
0 i
i 0

]
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A good way to implement rotations, cont’d

Unit quaternions as rotations

let r = a+ bi+ cj+ dk be a unit quaternion (a2 + b2 + c2 + d2 = 1)

let u = x i+ y j+ zk be a pure quaternion

Let Rr (u) = rur∗ (r∗ = a− bi− cj− dk)

Rr is a rotation of R3

Rr (u) = Rv,θ(x , y , z)

v ∝ (b, c , d)

θ = 2 cos−1(a)

Unit quaternions and unitaries

The set of unit quaternions identifies with the group SU(2) ⊆ M. This
gives a natural way to think about unitary operators as rotations.
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Introduction to Groups and Geometries
mathvista.org

lyons@lvc.edu

Combines introductory group theory with modern geometries

Serves a wide audience of math and physics students

Provides useful language and problem solving tools
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A Rotation Decomposition

Task for a superhero

Space monster rotates the earth out of kilter

Superhero (you) must put the earth back right

Use only rotations about two axes

Solution

inverse of the space monster’s rotation is

R = RZ ,θ3 ◦ RY ,θ2 ◦ RZ ,θ1

Consequence

Any rotation of 3-space can be implemented by composing at most three
rotations about the Z and Y axes

Lyons (LVC) Quantum Bits and Quaternions 2025.01.11 18 / 22



Another rotation decomposition

Find rotations A,B ,C so that R = AXBXC and ABC = Id

X = RX ,π

R = RZ ,γ ◦ RY ,β ◦ RZ ,α

= RZ ,γ ◦
(
R
Y ,β

2
◦ R

Y ,β
2

)
◦
(
RZ ,α+γ

2
◦ RZ ,α−γ

2

)
= (RZ ,γ ◦ RY ,β

2︸ ︷︷ ︸
A

) ◦ R
Y ,β

2
◦ RZ ,α+γ

2
◦ RZ ,α−γ

2︸ ︷︷ ︸
C

= (RZ ,γ ◦ RY ,β
2︸ ︷︷ ︸

A

) ◦
(
X ◦ R

Y ,−β
2
◦ X

)
◦
(
X ◦ R

Z ,
−(α+γ)

2

◦ X
)
◦ RZ ,α−γ

2︸ ︷︷ ︸
C

= (RZ ,γ ◦ RY ,β
2︸ ︷︷ ︸

A

) ◦ X ◦ (R
Y ,−β

2
◦ R

Z ,
−(α+γ)

2︸ ︷︷ ︸
B

) ◦ X ◦ RZ ,α−γ
2︸ ︷︷ ︸

C

= AXBXC
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Why did we just do that?

Problem

Implement a controlled-U using only 1-qubit unitaries and CNOT

Unitary factorization that gives a solution

Given a 1-qubit unitary U, there exist 1-qubit unitaries A,B,C such that

U = AXBXC

Id = ABC

=
U C X B X A
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Summary and Outlook

Quantum computation is promising for practical applications

Quantum computation is filled with a lot of great math problems

Many of those problems have few prerequisites, however . . .

At least some facility with basics of abstract algebra and modern
geometry is necessary

For the sake of time and productivity, introductions to algebra and
geometry must be streamlined and efficient

The quaternions play a useful role, hurray!

Thoughtful attention to background training makes real research
accessible to undergraduates
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Thank you!

http://quantum.lvc.edu/mathphys
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Stereographic projection S2 → C ∪ {∞}

P ′

P

P = (a, b, c) → a+ ib

1− c
= P ′
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Bloch sphere

(
cos θ

2, e
iϕ sin θ

2

)
∈ C2

θ

ϕ

x

z

y

P

For (a, b) ∈ C2, we have Bloch(a, b) = stereo−1(a/b)

Lyons (LVC) Quantum Bits and Quaternions 2025.01.11 22 / 22



Comparison of rotation conventions

Ways that (a, b, c , d) ∈ S3 acts as a rotation on S2

(unit quaternions) ↔ (Möbius elliptic group) ↔ SU(2)

a+ bi + cj + dk ↔
[
z → (a+bi)z+(c+di)

(−c+di)z+(a+bi)

]
↔

[
a+ bi c + di
−c + di a− bi

]
axis angle

quaternions (b, c , d) 2 cos−1 a

Möbius transf. (d ,−c , b) 2 cos−1 a

Bloch coordinates (d , c , b) −2 cos−1 a
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