
Physics and Functional Programming

Scott N. Walck

Version 0.1, August 17, 2018

ii

Contents

Preface xiii

I Language 1

1 Introduction to Haskell 5

1.1 Using GHCi as a calculator 5

1.2 Numeric functions . 6

1.3 Operators . 8

1.4 Numbers in Haskell . 11

1.4.1 Negative numbers in Haskell 11

1.4.2 Decimal numbers in Haskell 12

1.4.3 Exponential notation 12

1.5 Functions with two arguments 12

1.6 Approximate calculation . 13

1.7 Errors . 15

1.7.1 Variable not in scope 15

1.7.2 No instance for Show 15

1.8 Getting help and quitting . 16

1.9 More information . 16

1.10 Exercises . 16

2 Functions 19

2.1 Constants, functions, and types 19

2.2 How we talk about functions 22

2.3 Anonymous functions . 24

2.4 Exercises . 26

iii

iv CONTENTS

3 Types 29
3.1 Basic types . 29

3.1.1 The Boolean type . 30
3.1.2 The character type . 32
3.1.3 The string type . 33

3.2 Function types . 33
3.3 Exercises . 35

4 Lists 39
4.1 List basics . 39
4.2 Infinite lists . 43
4.3 List constructors and pattern matching 44
4.4 Exercises . 46

5 Higher-order Functions 49
5.1 Functions with parameters . 49
5.2 Numerical integration . 53
5.3 Anonymous higher-order functions 55
5.4 Mapping over lists . 56
5.5 Operators as higher-order functions 57
5.6 Predicate-based higher-order functions 58
5.7 Exercises . 59

6 Quick Plotting 61
6.1 Exercises . 63

7 Type Classes 65
7.1 Introduction . 65
7.2 Type classes from the Prelude 66

7.2.1 Type class Eq . 67
7.2.2 Type class Ord . 68
7.2.3 Type class Show . 68
7.2.4 Type class Num . 69
7.2.5 Type class Integral 69
7.2.6 Type class Fractional 69
7.2.7 Type class Floating 70

7.3 Prelude functions with type class constraints 71
7.4 Sections . 71

CONTENTS v

7.5 Higher-order functions as operators 72
7.6 Example of type classes and plotting 73
7.7 Exercises . 76

8 Tuples 79
8.1 Pairs . 79
8.2 Functions of two variables . 80
8.3 Triples . 82
8.4 Comparison of lists and tuples 83
8.5 Maybe types . 83
8.6 Lists of pairs . 85
8.7 Exercises . 87

9 List Comprehensions 91
9.1 Mapping . 91
9.2 Filtering . 92
9.3 Exercises . 94

10 Presentation Plotting 95
10.1 Title and axis labels . 95
10.2 Other labels . 97
10.3 Plotting data . 98
10.4 Multiple curves on one set of axes 98
10.5 Controlling the plot ranges . 100
10.6 Exercises . 101

11 Animation 103
11.1 2D Animation . 103

11.1.1 Displaying a picture 103
11.1.2 Making an animation 104
11.1.3 Making a simulation 105

11.2 3D Animation . 105

II Newtonian Mechanics 107

12 Newton’s Second Law 109
12.1 Newton’s First Law . 109
12.2 Newton’s Second Law . 110

vi CONTENTS

12.3 State update . 116

13 Mechanics in One Dimension 123

13.1 State update . 123

13.2 Units . 131

13.3 Air resistance . 132

13.3.1 Introduction . 132

13.3.2 Collision model . 132

13.4 Euler-Cromer method . 133

13.5 Exercises . 134

14 Mechanics in Three Dimensions 137

14.1 Vectors in Haskell . 137

14.2 Euler method with vectors . 139

14.3 Animation . 143

15 Multiple Objects in Three Dimensions 149

15.1 The State of a Physical System 149

15.2 Multiple Objects in Three Dimensions 155

15.3 Waves on a Flexible String . 156

III Electromagnetic Theory 159

16 Coordinate Systems 163

16.1 Polar coordinates . 163

16.2 Cylindrical coordinates . 165

16.3 Spherical coordinates . 166

16.4 A type for position . 168

16.5 Displacement . 173

16.6 Scalar and vector fields . 174

17 Curves, Surfaces, and Volumes 177

17.1 Curves . 178

17.2 Surfaces . 180

17.3 Volumes . 183

17.3.1 A unit ball . 184

CONTENTS vii

18 Electric Charge 187
18.1 Charge Distributions . 187
18.2 A type for charge distribution 190
18.3 Total charge . 191

19 Electric Field 193
19.1 Coulomb’s law . 193
19.2 Electric Field . 194
19.3 Electric Field produced by a Line Segment of Charge 201

20 Electric Current 203
20.1 Current Distributions . 203
20.2 A type for current distribution 205
20.3 Total current . 206

21 Magnetic Field 207
21.1 Magnetic Field of a Circular Current Loop 208

22 Motion of a Charged Particle 209

A Color Summary 213

B A Type for Vectors 215

C Vector Integrals 221
C.1 A table of vector integrals . 221
C.2 Applications of the integrals 221

C.2.1 Scalar line integral . 221
C.2.2 Vector line integral . 222
C.2.3 Dotted line integral . 222
C.2.4 Scalar surface integral 223
C.2.5 Vector surface integral 223
C.2.6 Flux integral . 223
C.2.7 Scalar volume integral 224
C.2.8 Vector volume integral 224

C.3 Code for integrals . 225
C.3.1 Scalar line integral . 226
C.3.2 Vector line integral . 233
C.3.3 Dotted line integral . 233

viii CONTENTS

C.3.4 Scalar surface integral 234
C.3.5 Vector surface integral 235
C.3.6 Flux integral . 236
C.3.7 Scalar volume integral 236
C.3.8 Vector volume integral 237

C.4 Fundamental theorems of calculus 238
C.4.1 Gradient theorem . 238
C.4.2 Stokes’ theorem . 238
C.4.3 Divergence theorem . 238

C.5 Calculation . 239
C.5.1 Line integrals . 239
C.5.2 Flux integrals . 244

D A Catalog of Fields, Paths, Surfaces, and Volumes 247
D.1 Scalar Fields . 247

D.1.1 Scalar fields expressed in Cartesian coordinates 247
D.1.2 Scalar fields expressed in cylindrical coordinates 248
D.1.3 Scalar fields expressed in spherical coordinates 249
D.1.4 Scalar fields expressed in a coordinate-independent fash-

ion . 249
D.2 Vector Fields . 250

D.2.1 Vector fields expressed in Cartesian coordinates 250
D.2.2 Vector fields expressed in cylindrical coordinates 250
D.2.3 Vector fields expressed in spherical coordinates 251
D.2.4 Vector fields expressed in a coordinate-independent fash-

ion . 252
D.3 Paths . 252

D.3.1 Paths expressed in Cartesian coordinates 252
D.3.2 Paths expressed in cylindrical coordinates 253
D.3.3 Paths expressed in spherical coordinates 254

D.4 Surfaces . 254
D.4.1 Surfaces expressed in Cartesian coordinates 254
D.4.2 Surfaces expressed in cylindrical coordinates 256
D.4.3 Surfaces expressed in spherical coordinates 257

D.5 Volumes . 257
D.5.1 Volumes expressed in Cartesian coordinates 257
D.5.2 Volumes expressed in cylindrical coordinates 257
D.5.3 Volumes expressed in spherical coordinates 258

CONTENTS ix

Index 259

x CONTENTS

To Peggy, Carl, Dan, and Jodi.

xi

xii CONTENTS

Preface

One of the best ways to learn something is to teach it. It is invaluable to
have a person who is willing to listen to what we say, to read what we write,
and to respond. Knowing that someone is listening or reading encourages us
to spend time and effort creating something of quality. And if our writing
incites a response, so much the better, for we have started a conversation
that might challenge us to sharpen our understanding.

A pleasant and productive way to learn physics is to teach a computer
how to do it. We admit up front that the computer is not as rich a listener
as a person, and cannot provide the depth or breadth of response to our
writing that a person can. On the other hand, the computer is very attentive,
willing to listen incessantly, and unwilling to accept statements unless they
are expressed in clear language and make sense. The computer can provide
us with a useful response, because it will happily calculate what we ask it to
calculate, and it will quickly tell us if what we just said makes no sense (and
hopefully give us a clue about why it makes no sense).

This book is about learning basic theoretical physics by teaching a com-
puter how to do it. We will spend a substantial amount of time with Newton’s
Second Law. We will focus on the concept of the state of a physical system,
and see that Newton’s Second Law is the core rule for describing how the
state changes in time. We will study basic electromagnetic theory, asking the
computer to calculate electric and magnetic fields produced by charge and
current distributions. The point is to deepen your understanding of physics
by approaching it from a new angle, with a new language. The language we
will use is precise, and will help to clarify thinking.

This book grows out of a sophomore-level computational physics course
that I teach at Lebanon Valley College. Students enrolled in the course have
previously taken a year of calculus-based introductory physics. No previous
programming experience is assumed.

xiii

xiv PREFACE

Since the book begins with a self-contained introduction to the Haskell
programming language for people who have not programmed before, it can
be used as a supplement for introductory and intermediate courses in physics
in which the instructor or student

(a) wishes to include a computational component, or

(b) desires a deeper understanding of the structure of basic physical theo-
ries.

The book is also appropriate for self-study by any student who wishes to
deepen their understanding of physics by programming.

Physics can be encoded in any programming language. Why use a func-
tional language instead of a more mainstream object-oriented language, say?
Beauty and power are to be found more in verbs than in nouns. Newton found
beauty and power not in the world per se, but in the description of how the
world changes. Functional programming found beauty and power not in ob-
jects, but in the functions that take objects as input and produce objects as
output, and in the notion that such objects might themselves be functions.
Haskell is a good programming language for learning physics for two reasons.
First, Haskell is a functional programming language. This means that func-
tions play a central role in the language, including functions that take other
functions as arguments and return functions as results. A number of phys-
ical ideas are naturally expressed in the language of higher-order functions.
Second, Haskell’s type system provides a clean way to organize our thinking
about the physical quantities and procedures of interest in physics. I know of
no better way to clarify my thinking than expressing my ideas in functional
language.

This book has been (and continues to be) a labor of love, meaning that
my motivation for writing it comes from a love of the ideas and a desire to
share them. I am committed to incremental improvement of the text, and
I am grateful to hear about and correct any mistakes that the reader finds
here. Enjoy!

Part I

Language

1

3

In this part, we introduce the Haskell programming language and a few
libraries that will form the basic linguistic building blocks in which we will
write our ideas.

We will see that Haskell (and even the relatively small subset of Haskell
that we will discuss and use) is a rich language with structures that allow
and encourage specialization toward a particular domain of interest (in our
case, physics). When augmented with a number of libraries, we will have a
toolkit capable of expressing most all of the important ideas in theoretical
physics, calculating quantities of interest, and presenting results in useful
ways (graphs, figures, animations).

Part I draws on physics for examples of the use of language features, but
stops short of attempting any systematic expression of physical ideas. The
principle focus is on the language itself.

4

Chapter 1

Introduction to Haskell

In this book, we will use the Haskell programming language to describe
calculations that we want the computer to do for us. Haskell is a lovely, deep
language, and we will use only a small subset of the language. Studying the
language and using it for physics will clarify your thinking.

Haskell is a functional programming language, meaning that computations
are built out of functions. It encourages a style of programming that is quite
different from “imperative” languages like C, C++, Java, Python, and others.
As there are no programming prerequisites for this book, we will not spend
any more time comparing Haskell to other programming languages. We will
just jump in and start learning Haskell.

The Haskell compiler that we will use in this book is the Glasgow Haskell
Compiler (GHC). There is an interactive version of the compiler that will be
of great use to us called GHCi. We begin by exploring some basic things we
can do with GHCi.

1.1 Using GHCi as a calculator

GHCi is the interactive version of the Glasgow Haskell Compiler. It is inter-
active in the sense that we can enter an expression, and GHCi will evaluate
the expression and return a result.

The method of starting GHCi may depend on the operating system your
computer uses. Typically you can click on an icon, choose GHCi from a
menu, or type ghci at a command line.

When GHCi starts, you get a prompt at which you can enter expressions.

5

6 CHAPTER 1. INTRODUCTION TO HASKELL

The first prompt you get from GHCi is

Prelude>

The Prelude is a collection of constants, functions, and operators that
are available by default, and that you can immediately use to construct
expressions. GHCi indicates that the Prelude has been loaded for you by
including the name Prelude in the prompt.

GHCi is now waiting for you to enter an expression. If you type 2/3,
follow by enter, GHCi will evaluate this expression and print a result.

GHCi
2/3

 0.6666666666666666

In the expression 2/3, Haskell interprets the 2 and 3 as numbers, and the
/ as a binary operator for division. GHCi performs the requested division
and returns the result.

1.2 Numeric functions

Haskell provides functions in the Prelude to do many of the things that you
expect calculators to be able to do.

GHCi
log(2)

 0.6931471805599453

This is the natural logarithm function applied to the number 2. The Haskell
language does not need parentheses to apply a function. Function application
(also known as function use or function evaluation) is such a basic idea in
Haskell that the juxtaposition of two expressions is taken to mean that the
first expression is a function, the second is an argument, and the function is
applied to the argument. Therefore, we can type the following.

GHCi
log 2

 0.6931471805599453

A list of numeric functions available in the Prelude is given in Table 1.1.
Haskell provides the constant π in the Prelude.

GHCi
pi

 3.141592653589793

Here is a trigonometric function.

1.2. NUMERIC FUNCTIONS 7

Function Description
exp expx = ex

sqrt square root
abs absolute value
log natural logarithm (log base e)
sin argument in radians
cos argument in radians
tan argument in radians
asin arcsine (inverse sine)
acos arccosine
atan arctangent
sinh sinhx = (ex − e−x)/2
cosh coshx = (ex + e−x)/2
tanh tanhx = (ex − e−x)/(ex + e−x)
asinh inverse hyperbolic sine
acosh inverse hyperbolic cosine
atanh inverse hyperbolic tangent

Table 1.1: Some common numeric functions

8 CHAPTER 1. INTRODUCTION TO HASKELL

GHCi
cos pi

 -1.0

Notice that trigonometric functions in Haskell expect an argument in radians.
Let’s calculate cos π

2
.

GHCi
cos pi/2

 -0.5

The computer did not give us what we expect here; cos π
2

= 0, not −1
2
. The

reason is that function application in Haskell has higher precedence than
division, so Haskell interprets what we typed as

GHCi
(cos pi)/2

 -0.5

rather than dividing π by two first and then taking the cosine. We can get
what we want by supplying parentheses.

GHCi
cos (pi/2)

 6.123233995736766e-17

Is the result the computer gave cos π
2
? Not exactly. Here we see an ex-

ample of an approximately computed result. My computer gave something
times 10−17, which is as close to zero as the computer can get here. It’s
good to remember that when doing numerical work, the computer (like your
calculator) is not giving us exact results most of the time. It is giving us
approximate results. We need to be vigilant in making sure that the results
it gives are valuable to us by interpreting them correctly. Later, after we
discuss Haskell’s system of types, we will say more about when we can and
when we cannot expect the computer to produce exact results.

1.3 Operators

The Haskell Prelude provides a number of infix operators, shown in Table 1.2.
They are called “infix” because they sit between the two items that they act
on. (In computer science generally, an operator placed before its arguments is
called a prefix operator, and an operator placed after its arguments is called
a postfix operator. In Haskell, operators always mean infix operators.)

Table 1.2 shows operators for addition, subtraction, multiplication, and
division. These work pretty much as you would expect. The table shows
three different operators for exponentiation. This proliferation is related

1.3. OPERATORS 9

Operation Operator Precedence Associativity
Composition . 9 Right
Exponentiation ^, ^^, ** 8 Right
Multiplication, division *, / 7 Left
Addition, subtraction +, - 6 Left
List operators :, ++ 5 Right
Equality, Inequality ==, /= 4
Comparison <, >, <=, >= 4
Logical And && 3 Right
Logical Or || 2 Right
Application $ 0 Right

Table 1.2: Precedence and associativity for common operators

to Haskell’s type system, about which we will say more later. The “carrot”
operator ^ can handle only nonnegative integer exponents. The double carrot
^^ can handle any integer exponent. The ** can handle any real exponent.
For now, I recommend ** for exponentiation.

The equality, inequality, and comparison operators can be used between
numeric expressions.

GHCi
pi > 3

 True

The result of a comparison is a Boolean expression (True or False).

We will discuss the other operators in Table 1.2 at a later point.

As we saw earlier when we tried to take the cosine of π/2, function ap-
plication takes precedence over infix operators. In addition, some operators
take precedence over other operators.

In the expression

GHCi
1 + 2 * 3

 7

the multiplication of 2 and 3 will occur before the addition with 1. This
is consistent with usual mathematical notation. In order to carry this out,
binary operators in Haskell have a precedence associated with them that
describes which operations should be carried out first. Binary operators
have a precedence from 0 to 9. A higher precedence means an operation will
be carried out first. For example, addition and subtraction have a precedence

10 CHAPTER 1. INTRODUCTION TO HASKELL

of 6 in Haskell, while the precedence of multiplication and division is 7 and
the precedence of exponentiation is 8. The “or” operation between Boolean
values has a precedence of 2, and the “and” operation has a precedence of 3.

The far right column of Table 1.2 lists associativity of some operators.
Consider the expression 8 - 3 - 2. There are two ways in which this ex-
pression might be interpreted. One interpretation (and this is the standard
mathematical convention) is that the expression is shorthand for (8− 3)− 2,
which evaluates to 3. Another interpretation is that the expression is short-
hand for 8 − (3 − 2), which evaluates to 7. Clearly, it is important for us
to understand which of these two interpretations is correct for the original
expression, and that is where associativity comes in. Looking at Table 1.2,
we see that subtraction is left associative. This means that the left-most sub-
traction is carried out first, resulting in the first interpretation given above
(resulting in 3, not 7).

Precedence and associativity allow us to unambiguously determine which
operators act first.

Example 1.1. Add parentheses to the following expression to indicate the
order in which Haskell’s precedence and associativity rules would evaluate
the expression.

8 / 7 / 4 ** 2 ** 3 > sin pi/4

Solution: Function application takes precedence over all operators, so sin

pi is the first thing calculated.

8 / 7 / 4 ** 2 ** 3 > (sin pi)/4

Next, exponentiation is the operator in the expression with the highest prece-
dence in Table 1.2. Exponentiation occurs twice. Since it is right associative,
the right-most exponentiation occurs next.

8 / 7 / 4 ** (2 ** 3) > (sin pi)/4

Next is the left exponentiation.

8 / 7 / (4 ** (2 ** 3)) > (sin pi)/4

Next is division. There are three divisions. The right-most division is un-
problematic, but the two divisions on the left of the expression need to be
resolved by associativity rules. Division is left associative.

1.4. NUMBERS IN HASKELL 11

(8 / 7) / (4 ** (2 ** 3)) > ((sin pi)/4)

Note we have inserted two sets of parentheses in the last step. One is for
the right-most division and one is for the left-most division. Now we can put
parens in for the inner division.

((8 / 7) / (4 ** (2 ** 3))) > ((sin pi)/4)

The last operator to act is the comparison operator >. There is no need to put
parens around the entire expression, so we are done. The fully parenthesized
expression is

((8 / 7) / (4 ** (2 ** 3))) > ((sin pi)/4)

The purpose in learning the precedence and associativity rules is so that
we can avoid using parentheses as much as possible. Multiple levels of nested
expressions make things hard to read. Try never to use more than two
levels of nested parentheses. In addition to knowing the precedence and
associativity rules, there are other ways to avoid the use of parentheses, such
as defining a local variable, that we will discuss later.

1.4 Numbers in Haskell

1.4.1 Negative numbers in Haskell

If you try

5 * -1

you will get an error, although the meaning of the expression seems clear
enough; we want to multiply 5 by −1. The trouble here is that the minus
sign acts as both a binary operator (as in the expression 3− 2) and a unary
operator (as in the expression −2). Binary operators play an important role
in Haskell, and the syntax of the language supports their use in a consistent,
unified way. Unary operators in Haskell are much more of a special case; in
fact, the minus sign is the only one. Because of decisions the Haskell design-
ers made (which seem in hindsight to have been good decisions), negative
numbers are sometimes not recognized as readily as you might expect.

The solution is simply to enclose negative numbers in parentheses. For
example,

12 CHAPTER 1. INTRODUCTION TO HASKELL

GHCi
5 * (-1)

 -5

evaluates readily to −5.

1.4.2 Decimal numbers in Haskell

A number containing a decimal point must have digits (0 through 9) both
before and after the decimal point. Thus we must write 0.1 not .1; instead
of 5. we must write either 5.0 or 5 without a decimal point. The reason is
that the dot character serves another role in the language (namely function
composition, mentioned in the top line of Table 1.2, which we will study
later). The rule requiring digits before and after a decimal point helps the
compiler distinguish the meaning of the dot character.

1.4.3 Exponential notation

You can use exponential notation to describe numbers in Haskell that are
very big or very small. Here are a few examples.

Mathematical notation Haskell notation
3.00× 108 3.00e8

6.63× 10−34 6.63e-34

Haskell will also use exponential notation to show you numbers that turn
out to be very big or very small.

Expression evaluates to
8**8 1.6777216e7

8**(-8) 5.960464477539063e-8

1.5 Functions with two arguments

All of the functions in Table 1.1 take one real number as input and give a
real number as output (assuming the input is in the domain of the function).
There are a couple of useful numeric functions that take two real numbers
as input. These are listed in Table 1.3.

1.6. APPROXIMATE CALCULATION 13

Function Example
logBase logBase 10 100 = 2
atan2 atan2 1 0 = π/2

Table 1.3: Numeric functions with two arguments

GHCi
logBase 10 100

 2.0

GHCi
atan2 1 0

 1.5707963267948966

The logBase function takes two arguments; the first is the base of the
logarithm and the second is the number we wish to take the log of.

The atan2 function solves a problem you may have run into if you’ve
tried to use the inverse tangent function to convert from Cartesian to polar
coordinates. Consider the following equations for polar coordinates (r, θ) in
terms of Cartesian coordinates (x, y).

r =
√
x2 + y2

θ = tan−1(y/x)

Suppose we are trying to find the polar coordinates associated with the point
(x, y) = (−1,−

√
3). The answer needs to be a point in the 3rd quadrant,

since x and y are both negative. This means θ should be in the range π <
θ < 3π/2 (or −π < θ < −π/2). But if we mechanically apply the formula
above for θ, we will calculate tan−1(

√
3), which our calculator or computer

will tell us is π/3. The problem is the domain of the inverse tangent function,
and a solution is to use the atan2 function instead of the atan function. The
result of atan2 y x will give the angle, in radians, in the correct quadrant.

Note how the two arguments are given to the functions logBase and
atan2. In particular, there is no comma between the two argument values,
as would be required in traditional mathematical notation.

1.6 Approximate calculation

Most of the calculations that we will do are not exact calculations. When we
ask the computer to find the square root of 5,

14 CHAPTER 1. INTRODUCTION TO HASKELL

GHCi
sqrt 5

 2.23606797749979

it gives a very accurate result, but it is not an exact result. The computer
uses a finite number of bits to represent this number.

If you evaluate sqrt 5 ^ 2 in GHCi, you may not get exactly 5.0 as a
result.

GHCi
sqrt 5 ^ 2

 5.000000000000001

The computer does not represent
√

5 exactly. We can even ask the following
in GHCi.

GHCi
sqrt 5 ^ 2 == 5

 False

My computer gives False, because of the approximate calculation.

Another source of non-exactness in calculation comes from the computer’s
use of a binary (base 2) internal representation of numbers. When I multiply
3 ∗ 0.2, I don’t get exactly 0.6. Why? The reason is that 0.2, which has a
nice finite decimal (base 10) representation, is a repeating binary (base 2)
number. Just like the fraction 1/3 has an infinite repeating representation in
base 10 (0.333333...), the fraction 1/5 has an infinite repeating representation
in base 2.

Number Decimal Binary
1/2 0.5 0.1
1/3 0.333333... 0.01010101...
1/4 0.25 0.01
1/5 0.2 0.001100110011...

The computer converts every number that we supply in decimal into its
internal binary form, and only keeps a finite number of digits (bits, really).
Most of the time, we don’t need to be concerned with this, but it explains
why some calculations that seem like they should be exactly calculable are
not. The moral of this story is never to do equality checking of numbers
when either number has been approximately calculated.

1.7. ERRORS 15

1.7 Errors

People make mistakes. This is as it should be. When you enter something the
computer does not understand, it will give you an error message. These mes-
sages can appear intimidating, but they are a great opportunity for learning,
and it is worthwhile to learn how to read them.

1.7.1 Variable not in scope

One of the simplest types of error comes from using a variable that has not
been defined. If we ask GHCi for the value of x without having defined x,
we will get a ”variable not in scope” error.

GHCi
x

<interactive>:19:1: error: Variable not in scope: x

The scope of a variable is the set of situations in which it can be used.
The idea of scope is important and more complex than just defining or not
defining something. For now, ”variable not in scope” means that you used
a variable, the computer expected to already know what that variable stood
for, but didn’t.

1.7.2 No instance for Show

There are some completely legitimate, well-defined objects in Haskell that
have no good way of being shown on the screen. Functions are the most
common example. Since a function can accept a wide variety of inputs and
produce a wide variety of outputs, there is in general no good way of display-
ing the ”value” of a function. If you ask GHCi to tell you what the square
root function ”is”, it will complain that it knows no way to show it to you
by saying that is has ”no instance of Show”.

GHCi
sqrt

<interactive>:20:1: error:

No instance for (Show (Double -> Double))

arising from a use of print

16 CHAPTER 1. INTRODUCTION TO HASKELL

(maybe you haven’t applied a function to enough arguments?)

In a stmt of an interactive GHCi command: print it

This message is not due to an error at all. GHCi is merely telling you
that it can’t display the thing you want.

1.8 Getting help and quitting

To ask GHCi for help type :help (or :h). To leave GHCi, type :quit (or
:q).

Commands that start with a colon do not belong to the Haskell program-
ming language proper, but rather to the GHCi interactive compiler. We will
see more of these commands that start with colons later.

1.9 More information

To learn more about the Haskell programming language (of which GHCi is a
popular implementation), you can visit the web site http://www.haskell.

org/.
The haskell.org web site has links to a number of online and paper

sources for learning the language. Some particularly good ones are Learn
You a Haskell for Great Good (http://learnyouahaskell.com/) and Real
World Haskell (http://book.realworldhaskell.org/).

1.10 Exercises

Exercise 1.1. Evaluate sin 30 in GHCi. Why is it not equal to 0.5?

Exercise 1.2. Add parentheses to the following expressions to indicate the
order in which Haskell’s precedence and associativity rules would evaluate
the expressions.

(a) 2 ^ 3 ^ 4

(b) 2 / 3 / 4

(c) 7 - 5 / 4

1.10. EXERCISES 17

(d) log 49/7

Exercise 1.3. Use GHCi to find log2 32.

Exercise 1.4. Use the atan2 function in GHCi to find the polar coordinates
(r, θ) associated with Cartesian coordinates (x, y) = (−3, 4).

Exercise 1.5. Find a new example of a calculation in which the computer
produces a result that is just a little bit different from the exact result.

Exercise 1.6. Why is there no associativity listed for the equality, inequality,
and comparison operators in Table 1.2? (Hint: Write down the simplest
expression you can think of that would require the associativity rules to
resolve the precedence of comparison operators and try to make sense of it.)

18 CHAPTER 1. INTRODUCTION TO HASKELL

Chapter 2

Functions

Programming in Haskell is a process of defining functions that express to
the computer how to calculate something we want. There is a way to define
functions inside GHCi, but since most functions that we define we will want
to use again another day, it is better to define our functions in a file, and
load that file into GHCi.

We need a text editor to create such a file. Examples of popular text
editors are GNU Emacs and gedit. Word-processing programs that you
might use to type a letter or a document are not appropriate for this purpose,
because they store the text you type with additional information (such as
font type and size) that will make no sense to the Haskell compiler.

2.1 Constants, functions, and types

Using a text editor, let’s create a file named first.hs for our first program.
(The .hs extension indicates a Haskell program.) Let’s put the following
lines in the file.

-- First Haskell program

-- Here we define a constant

e :: Double

e = exp 1

-- Here we define a function

19

20 CHAPTER 2. FUNCTIONS

square :: Double -> Double

square x = x**2

This program file defines a constant and a function. The lines that begin
with -- are comments . The Haskell compiler ignores any line that begins
with a double hyphen; the purpose of a comment is to aid a human reader
of the code. Code samples in this book highlight comments in orange. Your
text editor may or may not highlight the text you type. The Haskell compiler
does not see this colorization. Color is used in this book in an effort to make
the purpose of the code easier to understand.

The first two non-comment lines of the file define the constant e, the base
of natural logarithms. Unlike π, e is not included in the Haskell Prelude.
The line

e :: Double

declares the type of e to be Double. A Double is an approximation to a real
number, sometimes called a floating point number. The name Double is used
for historical reasons to mean a double precision floating point number. This
type of number is capable of about 15 decimal digits of precision, compared
with a single precision number that is capable of about 7 decimal digits
of precision. The difference for the computer is the number of bits used
to represent the number inside the computer. Haskell has a type Float for
single precision numbers. Unless there is a compelling reason to do otherwise,
we will always use type Double for our (approximations to) real numbers.
Types, such as Double and Float, are displayed in blue in this book.

In addition to Double, there are a number of other types that we might
want to use. Haskell has a type Int for small integers (up to at least a few
billion), and a type Integer for arbitrary size integers.

Let’s get back to our first.hs program file. As we said above, the first
line of the file declares the type of the name e to be Double. This kind of
line, with a name followed by a double colon followed by a type, is called a
type signature. We may also call such a line a declaration, because it declares
the name e to have type Double.

The second line of the file actually defines e. Here, we use the built-in
function exp applied to the number 1 to produce the constant e. Remember
that we don’t need parentheses to apply a function to an argument.

2.1. CONSTANTS, FUNCTIONS, AND TYPES 21

Next, we have a type signature for the function square. The type of
square is declared to be Double -> Double. A type containing an arrow
is called a function type. (Function types will be explored in more detail in
section 3.2.) It says that square is a function that takes a Double as input
and produces a Double as output. The last line defines the function square.
Note the ** operator used for exponentiation.

To load this program file into GHCi, use GHCi’s :load command. (:l
for short).

GHCi :l first.hs

Note that the GHCi prompt changes from Prelude> to *Main>. This
indicates that our program file has been successfully loaded and given the
default name Main. You now have access to the constant and function defined
in the file. Let’s try them out.

GHCi
square 7

 49.0

GHCi
square e

 7.3890560989306495

The names e and square defined in the file first.hs are examples of
variable identifiers in Haskell. Variable identifiers must begin with a low-
ercase letter, followed by zero or more uppercase letters, lowercase letters,
digits, underscores, and single quotes. Names that begin with an uppercase
letter are reserved for types (which we discuss in chapter 3), type classes
(which we discuss in chapter 7), and module names.

If you forget or don’t know the type of something, you can ask GHCi for
the type with the :type command (:t for short).

GHCi
:t square

 square :: Double -> Double

The notation used for defining a function in Haskell is similar to mathe-
matical notation in some ways, and different in a few ways. Let’s comment
on the differences. Examples are shown in Table 2.1.

1. Traditional mathematical notation (and some computer algebra sys-
tems) use juxtaposition to represent multiplication. For example, 2x
means 2 multiplied by x, just because the symbols are next to each
other. Haskell requires use of the multiplication operator *. In Haskell,

22 CHAPTER 2. FUNCTIONS

juxtaposition means function application.

2. Traditional mathematical notation requires that function arguments be
put in parentheses after the function name. This is true for function
definitions (compare f(x) = x3 with Haskell’s f x = x**3) as well as
function applications (compare f(2) with Haskell’s f 2). Haskell does
not require parentheses in function definition or application. Haskell
uses parentheses to indicate the order of operations.

3. Traditional mathematical notation tries to get away with single-letter
function names, such as f . Haskell allows single-letter function names,
but it is much more common to use a multi-letter word for a function
name (such as square above), especially when the word can serve as a
good description of what the function does.

Mathematical definition Haskell definition
f(x) = x3 f x = x**3

f(x) = 3x2 − 4x+ 5 f x = 3 * x**2 - 4 * x + 5

g(x) = cos 2x g x = cos (2 * x)

v(t) = 10t+ 20 v t = 10 * t + 20

h(x) = e−x h x = exp (-x)

Table 2.1: Comparison of function definitions in traditional mathematical
notation with function definitions in Haskell

2.2 How we talk about functions

Suppose we define a function f by f(x) = x2 − 3x + 2. It is common in
mathematics and physics to speak of “the function f(x).” Haskell invites us
to think a bit more carefully and precisely about this bad habit. (Well, it
really requires us to think more carefully about it, but it’s always nicer to be
invited than required, no?) Instead of saying “the function f(x),” we should
say one of the following, depending on what we mean.

• the function f

• the value f(x)

2.2. HOW WE TALK ABOUT FUNCTIONS 23

• given a number x, the value of the function f at x

The second and third bullet points are two ways of saying the same thing.
The first bullet point is saying something different from the second and third.

What is wrong with saying “the function f(x)?” It is common in math-
ematics and physics to use “the function f” and “the function f(x)” inter-
changeably, the second expression merely indicating explicitly that f depends
on x. We think of mathematical notation as being a precise representation of
an idea, but this is a case where the commonly used notation is not precise.

When we use Haskell we make a trade off. We agree to use language
in a precise and careful way (the compiler is going to check us on this)
and in exchange, we will be able to say things in the language that (1) are
rather complex, (2) are difficult to say in a language that accommodates
imprecision, and (3) expose the essential structure of a physical theory like
Newtonian mechanics.

One reason for shunning the language “the function f(x)” is that if f(x) =
x2 − 3x + 2, then f(y) = y2 − 3y + 2. The letter x really has nothing to
do with the function f . Granted, we need some letter to use to make the
definition, but it doesn’t matter which one.

In Haskell, we say f(x) when we wish to evaluate the function f using
the input x. We say f when we wish to speak about the function itself,
not evaluating it (not giving it any input). What else is there to do with
a function except give it an input? Well, you could integrate the function
between given limits. You could differentiate the function to obtain another
function. You could, in some cases, apply the function twice. In short, there
are many things we might want to do with a function other than simply
evaluating it.

Haskell’s type system helps us understand the key distinction between f
and f(x). The variable x is a number, so has a type like Double. Now f is
a function, so has a type like Double -> Double. Finally, f(x) means the
function f evaluated at the number x, so f(x) has type Double. Things that
have type Double -> Double are functions. Things that have type Double

are numbers. The table below summarizes these distinctions.

Math notation Haskell notation Haskell type
f f Double -> Double

f(3) f 3 Double

f(x) f x Double

24 CHAPTER 2. FUNCTIONS

Computers are notorious for being inflexible in understanding what a per-
son means. Computers look at exactly what you said, and give warnings and
errors if your input doesn’t meet its requirements for format and interpreta-
tion. Much of the time, this is a pain in the neck. We would like to have an
assistant that understanding what we mean, and does what we want.

In the case of types and functions, however, Haskell’s inflexibility is a
great teaching aid. Haskell is helping us to organize our thinking, so that we
will be prepared to do more complex things in a structured and organized
way. Section 5.1 on higher-order functions is an example of how careful
thinking about types and functions allows us to encode more complex ideas
simply and easily.

2.3 Anonymous functions

Haskell provides a way to specify a function without naming it. For example,
the function that squares its argument can be written as follows.

\x -> x**2

A function specified in this way is called an anonymous function or a lambda
function after the lambda calculus developed by Alonzo Church in the 1930s.
(Church was Alan Turing’s Ph.D. advisor.) The backslash character (\) was
thought by Haskell’s creators to look a bit like the lowercase greek letter
lambda (λ).

Table 2.2 shows examples of mathematical functions written as lambda
functions. This is an alternative way to define the functions in Table 2.1.
The real power of lambda functions, however, comes from not naming them,
instead using them in places where a function is needed, but we don’t wish to
spend the effort (a declaration and a definition) to name a new function. We
will see examples of how this is useful in Chapter 5, where we discuss higher-
order functions that take other functions as input. These other functions are
sometimes conveniently expressed as anonymous functions.

2.3. ANONYMOUS FUNCTIONS 25

Mathematical function Haskell lambda function
f(x) = x3 f = \x -> x**3

f(x) = 3x2 − 4x+ 5 f = \x -> 3 * x**2 - 4 * x + 5

g(x) = cos 2x g = \x -> cos (2 * x)

v(t) = 10t+ 20 v = \t -> 10 * t + 20

h(x) = e−x h = \x -> exp (-x)

Table 2.2: Comparison of function definitions in traditional mathematical
notation with lambda functions defined in Haskell

We can apply the anonymous squaring function \x -> x**2 to the argu-
ment 3 by writing (\x -> x**2) 3 at the GHCi prompt.

GHCi
(\x -> x**2) 3

 9.0

Notice that when we write \x -> x**2, we are not defining what x is.
Instead we are saying that if we temporarily allow x to stand for the argument
of the function (such as 3 above), then we have a rule for determining the
value of the function applied to the argument. The same remark is true
of (named) mathematical functions; when we define f(x) = x2, this is a
definition for f , not a definition for x. The function \x -> x**2 is the same
as the function \y -> y**2; the variable that we use to name the argument
is not important. Both functions are the function that squares its argument.
Table 2.3 shows examples of the application of anonymous functions to an
argument. These examples could be evaluated at the GHCi prompt.

Expression evaluates to
(\x -> x**2) 3 9.0

(\y -> y**2) 3 9.0

(\x -> x**3) 3 27.0

(\x -> 3 * x**2 - 4 * x + 5) 3 20.0

(\x -> cos (2 * x)) pi 1.0

(\t -> 10 * t + 20) 3 50

(\x -> exp (-x)) (log 2) 0.5

Table 2.3: Examples of applying anonymous functions to an argument

26 CHAPTER 2. FUNCTIONS

2.4 Exercises

Exercise 2.1. In a Haskell program file (a new file with a new name that
ends in .hs), define the function f(x) =

√
1 + x. As we did for the function

square above, give both a type signature and a function definition. Then
load this file into GHCi and check that f(0) gives 1, f(1) gives about 1.414,
and f(3) gives 2.

Exercise 2.2. Consider throwing a rock straight upward from the ground
at 30 m/s. Ignoring air resistance, find an expression y(t) for the height of
the rock as a function of time.

Add on to your program file first.hs by writing a function

yRock30 :: Double -> Double

that accepts as input the time (after the rock was thrown) in seconds and
gives as output the height of the rock in meters.

Exercise 2.3. Continuing with the rock example, write a function

vRock30 :: Double -> Double

that accepts as input the time (after the rock was thrown) in seconds and
gives as output the upward velocity of the rock in meters per second. (A
downward velocity should be returned as a negative number.)

Exercise 2.4. Define a function sinDeg that computes the sine of an angle
given in degrees. Test your function by evaluating sinDeg 30.

Exercise 2.5. Write Haskell function definitions for the following mathe-
matical functions. In each case, write a type signature (the type should be
Double -> Double for each function) and a function definition. You will
need to pick alternative names for some of these functions, because Haskell
functions must begin with a lowercase letter. Do not use more than two
levels of nested parentheses.

(a) f(x) = 3
√
x

(b) g(y) = ey + 8y

2.4. EXERCISES 27

(c) h(x) =
1√

(x− 5)2 + 16

(d) γ(β) =
1√

1− β2

(e) U(x) =
1

10 + x
+

1

10− x

(f) L(l) =
√
l(l + 1)

(g) E(x) =
1

|x|3

(h) E(z) =
1

(z2 + 4)3/2

Exercise 2.6. (a) Express γ(β) =
1√

1− β2
as an anonymous function.

(b) Write an expression that applies the anonymous function from part (a)
to the argument 0.8. What result do you get from GHCi?

28 CHAPTER 2. FUNCTIONS

Chapter 3

Types

3.1 Basic types

The idea that every expression has a type is central to the Haskell program-
ming language. Haskell’s most important basic types are shown in Table 3.1.
The Bool type is for values that are either true or false, like the result of a
comparison. For example, 3 > 4 evaluates to False.

GHCi
3 > 4

 False

The Char type is for single characters. The String type is for strings of
characters. We have already mentioned the four basic numeric types Int,
Integer, Float, and Double.

It should be noted that the numeric examples in the right-most column

Type Description Examples
Bool Boolean False, True
Char character ’h’, ’7’
String string "101 N. College Ave."

Int small integer 42

Integer arbitrary integer 18446744073709551616

Float single-precision floating point 0.33333334

Double double-precision floating point 0.3333333333333333

Table 3.1: Haskell’s basic types

29

30 CHAPTER 3. TYPES

can be expressions of the type indicated, but that an expression by itself,
such as 42, does not necessarily have type Int. To be specific, False and
True must have type Bool, ’h’ and ’7’ must have type Char, and "101 N.

College Ave." must have type String. On the other hand, 42 could have
type Int, Integer, Float, or Double. Clarifying this ambiguity is one reason
to give a type signature with each name you define in a Haskell program.
Without a type signature, the compiler cannot tell which of the four numeric
types we might want for a number like 18446744073709551616. Any of the
four numeric types would try to hold the number, but only Integer would
represent the number exactly. The complexity of numeric types in Haskell is
related to a more advanced language feature called type classes that we will
discuss in chapter 7.

3.1.1 The Boolean type

The type Bool has only two inhabitants: False and True. As such, the type
is used for expressions that are meant to represent claims that might be true
or false.

Haskell has an if-then-else expression whose value depends on a Boolean.
The expression has the form if b then c else a. Here b is an expression of
type Bool called the condition, c is called the consequent , and a is called the
alternative. Haskell’s type system demands not only that b have type Bool,
but also that the consequent c and the alternative a have the same type
(this can be any type, Bool or something else). If the condition b evaluates
to True, then the entire if-then-else expression evaluates to c; if the condition
b evaluates to False, then the entire if-then-else expression evaluates to a.
In this book, we use bright purple for Haskell keywords such as if, then,
and else.

As an example of the if-then-else expression, consider the following func-
tion (sometimes called the Heaviside step function or the unit step function).

H(x) =

{
0 , x ≤ 0
1 , x > 0

(3.1)

We can write a definition for this function in Haskell using the if-then-else
construction. In Haskell, we are not allowed to begin the names of constants
or functions with capital letters (recall the discussion of variable identifiers
in section 2.1), so we will call this function stepFunction.

3.1. BASIC TYPES 31

stepFunction :: Double -> Double

stepFunction x = if x <= 0

then 0

else 1

The function stepFunction accepts a Double as input (called x in the
definition), and returns a Double as output. The expression x <= 0 is the
condition, the expression 0 is the consequent, and the expression 1 is the
alternative.

The Prelude provides a few functions that work with Booleans. The first
is not, which has type Bool -> Bool, meaning it accepts a Boolean as input
and gives another Boolean as output. The function not returns True if its
input is False, and returns False if its input is True. You can see this for
yourself in GHCi if you type

GHCi
not False

 True

or

GHCi
not True

 False

at the GHCi prompt. GHCi has a command :type (:t for short) that asks
about the type of something. You can ask GHCi for the type of not by
entering

GHCi
:t not

 not :: Bool -> Bool

at the GHCi prompt. GHCi commands that start with a colon are not part
of the Haskell language itself. You cannot use them in a Haskell program
file.

The Boolean “and” operator && takes two Booleans as input and gives
one Boolean as output. The output is True only when both inputs are True

and False otherwise. The behavior of the && operator is described in Table
3.2.

32 CHAPTER 3. TYPES

x y x && y
False False False

False True False

True False False

True True True

Table 3.2: Definition of the “and” operator

The Boolean “or” operator || takes two Booleans as input and gives one
Boolean as output. The output is False only when both inputs are False

and True otherwise. The behavior of the || operator is described in Table
3.3.

x y x || y
False False False

False True True

True False True

True True True

Table 3.3: Definition of the “or” operator

These operators are listed in Table 1.2 with their precedence and associa-
tivity. You can play with them in GHCi, asking for evaluations of expressions
such as

GHCi
True || False && True

 True

at the GHCi prompt.

3.1.2 The character type

The Char type is for single characters, including uppercase and lowercase
letters, digits, and some special characters (like the newline character that
produces a new line of text). Here are some examples of definitions of char-
acters.

3.2. FUNCTION TYPES 33

ticTacToeMarker :: Char

ticTacToeMarker = ’X’

newLine :: Char

newLine = ’\n’

There is very little reason to make these definitions, since any place where
we could use newLine, for example, we could just as easily use ’\n’, which
takes up less space. We do it here only to show the relationship between the
term ’X’ and the type Char. As shown in the examples above, a character
can be formed by enclosing a single letter or digit in single quotes.

3.1.3 The string type

A string is a sequence of characters. (In chapter 4, we will learn that a string
is a list of characters, where list has a precise meaning.) Here are some
examples.

hello :: String

hello = "Hello, world!"

errorMessage :: String

errorMessage = "Can’t take the square root of a Boolean!"

These definitions are not as useless as the ones above for characters,
because although "Hello, world!" is entirely equivalent to hello, the name
hello is at least shorter and easier to type than the string it represents. If
such a string was needed at several different places in a program, that would
justify the definition of a name such as hello. Note that to form a string
from a sequence of characters, we enclose the character sequence in double
quotes.

3.2 Function types

Haskell provides a number of ways to form new types from existing types.
Given any two types a and b, there is a type a -> b for functions that take

34 CHAPTER 3. TYPES

as input an expression of type a and produce as output an expression of type
b. Here is an example.

isX :: Char -> Bool

isX c = c == ’X’

The function isX takes a character as input and gives a Boolean as out-
put. The function returns True if the input character is ’X’, and False

otherwise. Adding parentheses may help in reading the function definition.
The definition is equivalent to

isX c = (c == ’X’)

In general in a definition, the name on the left of the single equals sign
= is begin defined (isX in this case), and the expression on the right of the
single equals sign is the body of the definition. The expression c == ’X’

uses the equality operator == from Table 1.2 to ask if the input character c

is the same as ’X’.
If we put this function definition into a Haskell program file (say FunctionType.hs)

and load it into GHCi,

GHCi :l FunctionType.hs

we can ask about the types of things. If we ask about the type of isX

GHCi
:t isX

 isX :: Char -> Bool

we see what we wrote in our type signature. In GHCi we can also ask for
the type of isX ’t’.

GHCi
:t isX ’t’

 isX ’t’ :: Bool

This makes sense, because the expression isX ’t’ represents the function
isX applied to the character argument ’t’. The type therefore represents
the type of the output of isX, namely Bool.

We can also ask GHCi for the value of isX ’t’ (as opposed to the type
of the expression). If we enter isX ’t’ at the GHCi prompt,

GHCi
isX ’t’

 False

3.3. EXERCISES 35

we see that the value of isX ’t’ is False, because ’t’ is not equal to ’X’.
Here is an example of a function with type Bool -> String.

bagFeeMessage :: Bool -> String

bagFeeMessage checkingBags = if checkingBags

then "There is a $100 fee."

else "There is no fee."

The function bagFeeMessage takes a Boolean as input and gives a string
as output. The input Boolean (called checkingBags) is intended to represent
an answer (True or False) to the question of whether a passenger is checking
bags. The style of naming a variable by sticking words together without
spaces, using a capital letter for the second and subseqent words, is common
in Haskell programming.

There is an alternative way to write the function bagFeeMessage that
uses a facility in Haskell called pattern matching . The type Bool allows
pattern matching, and other types that we will encounter later also allow
pattern matching. The idea behind pattern matching for Bool is that the
only possible inputs are False and True, so why not just give the output
for each possible input. Here is what the function looks like using pattern
matching.

bagFeeMessage2 :: Bool -> String

bagFeeMessage2 False = "There is no fee."

bagFeeMessage2 True = "There is a $100 fee."

Notice that by using pattern matching we have avoided using the if-
then-else construction. Notice also that we no longer need the variable
checkingBags, which held the input value.

3.3 Exercises

Exercise 3.1. Add parentheses to the following expressions to indicate the
order in which Haskell’s precedence and associativity rules (Table 1.2) would
evaluate the expressions. Some of the expressions are well-formed and have
a clear type. In those cases, give the type of the (entire) expression. Also

36 CHAPTER 3. TYPES

identify expressions that are not correctly formed (and consequently do not
have a clear type) and say what is wrong with them.

(a) False || True && False || True

(b) 2 / 3 / 4 == 4 / 3 / 2

(c) 7 - 5 / 4 > 6 || 2 ^ 5 - 1 == 31

(d) 2 < 3 < 4

(e) 2 < 3 && 3 < 4

(f) 2 && 3 < 4

Exercise 3.2. Write Haskell function definitions for the following mathe-
matical functions. In each case, write a type signature (the type should be
Double -> Double for each function) and a function definition.

(a) f(x) =

{
0 , x ≤ 0
x , x > 0

(b) E(r) =

{
r , r ≤ 1
1
r2

, r > 1

Exercise 3.3. Define a function isXorY with type signature

isXorY :: Char -> Bool

that will return True if the input character is ’X’ or ’Y’ (capital X or Y)
and False otherwise. Test your function by loading it into GHCi and giving
it inputs of ’X’, ’Y’, ’Z’, and so on.

Exercise 3.4. Define a function bagFee with type signature

bagFee :: Bool -> Int

that will return the integer 100 if the person is checking bags and the
integer 0 if not. Use an if-then-else construction for this function. Then
define a second function bagFee2 with the same type signature that uses
pattern matching instead of the if-then-else construction.

3.3. EXERCISES 37

Exercise 3.5. Define a function greaterThan50 with type signature

greaterThan50 :: Integer -> Bool

that will return True if the given integer is greater than 50, and False

otherwise.

Exercise 3.6. Define a function amazingCurve with type signature

amazingCurve :: Int -> Int

that will double a student’s score on an exam. However, if the new score
after doubling is greater than 100, the function should output 100.

Exercise 3.7. What is the type of the expression bagFee False using the
above definition of bagFee? What is the value of the expression bagFee

False using the above definition of bagFee?

Exercise 3.8. ”Give every function a type signature.” In Haskell, it is good
practice to give every function that you define in your program file a type
signature. We have been doing this all along. Type signatures serve as a
form of documentation to readers of your program (including yourself).

Add type signatures for each of the definitions in the code below.

circleRadius = 3.5

cot x = 1 / tan x

fe epsilon = epsilon * tan (epsilon * pi / 2)

fo epsilon = -epsilon * cot (epsilon * pi / 2)

g nu epsilon = sqrt (nu**2 - epsilon**2)

38 CHAPTER 3. TYPES

Chapter 4

Lists

4.1 List basics

A list in Haskell is an ordered collection of data, all with the same type. Here
is an example of a list.

velocities :: [Double]

velocities = [0,-9.8,-19.6,-29.4]

The type [Double] indicates that velocities is a list of Doubles. Square
brackets in the type indicate a list. A list with type [Double] can have any
number of items (including zero), but each item must have type Double. In
the second line, we define velocities by enclosing its elements in square
brackets separated by commas.

The empty list is denoted [].
There is a list element operator !! that can be used to learn the value of

individual elements of a list.

GHCi :l Lists.lhs

GHCi
velocities !! 0

 0.0

GHCi
velocities !! 1

 -9.8

GHCi
velocities !! 3

 -29.4

39

40 CHAPTER 4. LISTS

Note that the first element of a list is considered to be element number 0.
Lists of the same type can be concatenated with the ++ operator from

Table 1.2.

GHCi
velocities ++ velocities

 [0.0,-9.8,-19.6,-29.4,0.0,-9.8,-19.6,-29.4]

An arithmetic sequence is a list formed with two dots (..).

ns :: [Int]

ns = [0..10]

The list ns contains the integers from 0 to 10. I chose the name ns because
it looks like the plural of the name n, which seems like a good name for an
integer. It is a common style in Haskell programs to use names that end in
s for lists, but it is by no means necessary.

If we type a list into GHCi,

GHCi
[0,2,5+3]

 [0,2,8]

GHCi will evaluate each element and return the list of evaluated elements.
If we give GHCi an arithmetic sequence,

GHCi
[0..10]

 [0,1,2,3,4,5,6,7,8,9,10]

GHCi will expand the list for us.
A second form of arithmetic sequence allows an increment from one term

to the next that is different from 1.

GHCi
[-2,-1.5..1]

 [-2.0,-1.5,-1.0,-0.5,0.0,0.5,1.0]

In this second form, one specifies the first, second, and last entries of the
desired list. You can even do a decreasing list.

GHCi
[10,9.5..8]

 [10.0,9.5,9.0,8.5,8.0]

A second way to form a new type from an existing type (recall the first
way was function types, section 3.2) is to make a list type. Given any type
a (Int, Integer, Double, etc.), there is a type [a] for lists with elements of
type a.

4.1. LIST BASICS 41

You can, for example, make a list of functions. Recall the square function
that we defined in chapter 2.

square :: Double -> Double

square x = x**2

We can define the following list, where cos and sin are functions defined
in the Haskell Prelude.

funcs :: [Double -> Double]

funcs = [cos,square,sin]

Why would we want a list of functions? Later we will see a way to turn
a list of functions into a plot of all of the functions on the same set of axes.

The Prelude provides a function length that returns the number of items
in a list.

GHCi :l Lists.lhs

The GHCi command :l Lists.lhs loads a literate Haskell file called
Lists.lhs. Literate Haskell files are files that contain text (intended for
people) as well as Haskell code (intended for people and computers). This
chapter exists as a literate Haskell file called Lists.lhs that contains the
code above defining velocities, ns, and funcs. After the file is loaded, we
can use the length function to ask about the size of the lists.

GHCi
length velocities

 4

GHCi
length ns

 11

GHCi
length funcs

 3

Table 4.1 shows some Prelude functions for working with lists. The func-
tion head returns the first element of a list. Some uses of head are given in
Table 4.2. The function head can accept a list of type [Double], a list of type
[Char], a list of type [Int], or a list of type anything. Haskell allows the
use of a type variable to indicate that a function can work with an arbitrary

42 CHAPTER 4. LISTS

Function Type Description
head :: [a] -> a return first item of list
tail :: [a] -> [a] return all but first item of list
last :: [a] -> a return last item of list
init :: [a] -> [a] return all but last item of list
reverse :: [a] -> [a] reverse order of list
repeat :: a -> [a] infinite list of a single item
cycle :: [a] -> [a] infinite list repeating given list

Table 4.1: Some Prelude functions for working with lists

type. The type of head is [a] -> a, in which a is a type variable that could
be any type. The meaning of the type is that head will accept as input a list
of type a (where a could be anything) and return an a. You can see a type
variable if you ask GHCi for the type of the empty list.

GHCi
:t []

 [] :: [a]

The tail function returns everything but the first element of a list. The
function last returns the last element of a list. The function init returns
everything except the last element. The online book Learn You a Haskell
for Great Good (http://learnyouahaskell.com/) has cute a picture of a
caterpillar that explains these list functions. The types of these functions are
given in Table 4.1. Examples of their use are shown in Table 4.2.

Now that we have introduced lists, we can tell you that a string in Haskell
is nothing but a list of characters. In other words, the type String is exactly
the same as the type [Char]. Haskell provides some special syntax for strings,
namely the ability to enclosed a sequence of characters in double quotes to
form a String. This is obviously more pleasant than requiring an explicit
list of characters, such as [’W’,’h’,’y’,’?’]. You can ask GHCi whether
this is the same as "Why?".

GHCi
[’W’,’h’,’y’,’?’] == "Why?"

 True

GHCi responds with True, indicating that it regards these two expressions
as identical.

The identity of the types String and [Char] also means that a string
can be used in any function that expects a list of something. For example,

4.2. INFINITE LISTS 43

Expression evaluates to
length ["Gal","Jo","Isaac","Mike"] 4

length [1, 2, 4, 8, 16] 5

head ["Gal","Jo","Isaac","Mike"] "Gal"

head [1, 2, 4, 8, 16] 1

tail ["Gal","Jo","Isaac","Mike"] ["Jo","Isaac","Mike"]

tail [1, 2, 4, 8, 16] [2,4,8,16]

init ["Gal","Jo","Isaac","Mike"] ["Gal","Jo","Isaac"]

init [1, 2, 4, 8, 16] [1,2,4,8]

last ["Gal","Jo","Isaac","Mike"] "Mike"

last [1, 2, 4, 8, 16] 16

Table 4.2: Use of list functions.

we can use the function length on a string to tell us how many characters
it has.

There will be times when you may wish to “bundle together” expressions
of different types. For example, we may wish to form pairs composed of a
person’s name (a String) and age (an Int). A list is not the right structure
to use for this job. All elements of a list must have the same type. In Chapter
8, we will learn about tuples , which are a good way to bundle together items
of different types.

4.2 Infinite lists

Haskell is a lazy language, meaning that its does not always evaluate every-
thing in the order you might expect, but waits to see if values are needed
before doing any actual work. Haskell’s laziness allows the possibility of in-
finite lists. Of course, Haskell never actually creates an infinite list, but you
can think of the list as infinite because Haskell is willing to continue down
the list as far as it needs to. The list [1..] is an example of an infinite list.
If you ask GHCi to show you this list, it will go on indefinitely. You can type
Control-C or something similar to stop the endless printing of numbers.

An infinite list can be convenient when you don’t know in advance exactly
how much of a list you will want or need. For example, we might want to
compute a list of positions of a particle at 0.01 s time increments. We may

44 CHAPTER 4. LISTS

not know in advance the length of time over which we want this information.
Maybe we need to plot the values for the first 5 seconds, and then see if
we need to go for a longer time interval. If we write our function so that it
returns an infinite list of positions, the function will be simpler, because it
doesn’t need to know the total number of positions to calculate.

A good way to view the first several elements of an infinite list is with
the take function. Try the following in GHCi.

GHCi
take 10 [3..]

 [3,4,5,6,7,8,9,10,11,12]

GHCi should show you the first ten elements of the infinite list [3..].
Two Prelude functions from Table 4.1 create infinite lists. The function

repeat takes a single expression and returns an infinite list with the expres-
sion repeated an infinite number of times. By itself, this function doesn’t
seem very useful, but in combination with other functions we’ll learn about
later, it can be helpful.

The Prelude function cycle takes a (finite) list and returns the infinite
list formed by cycling through the elements of the finite list over and over
again. You can get an idea of what cycle does by asking GHCi to show you
the first several elements of such a list, like the following.

GHCi
take 10 (cycle [4,7,8])

 [4,7,8,4,7,8,4,7,8,4]

4.3 List constructors and pattern matching

There is a colon operator : (called cons for historical reasons) that attaches
a single item of type a to a list with type [a]. For example, 3:[4,5] is the
same as [3,4,5], and 3:[] is the same as [3].

Earlier we saw how we could use pattern matching to define a function
that took a Bool as input. The idea was that a Bool can only be one of two
things, so we’ll just define explicitly how the function should behave for each
of those two things. We can also use pattern matching to define a function
that takes a list as input. The idea is that a list is either the empty list []

or the cons x:xs of an item x with a list xs. Every list is exactly one of
these two mutually exclusive and exhaustive possibilities. In fact, internally
Haskell regards lists as begin formed out of the two constructors [] and
:. The list we think of as [13,6,4] is represented internally as 13:6:4:[]

4.3. LIST CONSTRUCTORS AND PATTERN MATCHING 45

which means 13:(6:(4:[])) when we allow for the right associativity of :.
Let’s give an example of defining a function on lists using pattern matching.

Example 4.1. Define a function sndItem that returns the second element
of a list, or gives an error if the list has fewer than two elements. The idea
is that sndItem [8,6,7,5] should return 6. Here is our definition.

sndItem :: [a] -> a

sndItem [] = error "Empty list has no second element."

sndItem (x:xs) = if null xs

then error "1-item list has no 2nd item."

else head xs

This example used the error function, which has type [Char] -> a,
meaning that it takes a string as input and can serve as any type. The
error function halts execution and returns the given string as a message.

We can make an even nicer function definition by going one step further,
using pattern matching on the xs list in sndItem.

Example 4.2. Define a function sndItem’ that returns the second element
of a list, or gives an error if the list has fewer than two elements. Try to
write the function without an if-then-else construction.

sndItem’ :: [a] -> a

sndItem’ [] = error "Empty list has no second element."

sndItem’ (x:[]) = error "1-item list has no 2nd item."

sndItem’ (x:y:_) = y

Notice the underscore character in the last line. We could have written
(x:y:ys) or (x:y:xs’) in place of (x:y:_). The underscore means that we
can’t be bothered to give the list a name because we have no intention of
using it or referring to it again. For this function, we don’t care whether the
list of items after the second item is empty or not; we care so little about
that list that we’re not even going to give it a name.

46 CHAPTER 4. LISTS

4.4 Exercises

Exercise 4.1. Give an abbreviation for the following list using the double
dot .. notation. Use GHCi to check that your expression does the right
thing.

ts :: [Double]

ts = [-2.0,-1.2,-0.4,0.4,1.2,2.0]

Exercise 4.2. Write a function sndItem’’ :: [a] -> a that does the same
thing as sndItem, but does not use pattern matching.

Exercise 4.3. What is the type of the following expression?

length "Hello, world!"

What is the value of the expression?

Exercise 4.4. Write a function with type Int -> [Int] and describe in
words what it does.

Exercise 4.5. Write a function null’ that does the same thing as the Pre-
lude function null. Use the Prelude function length in your definition of
null’, but do not use the function null.

Exercise 4.6. Write a function last’ that does the same thing as the Pre-
lude function last. Use the Prelude functions head and reverse in your
definition of last’, but do not use the function last.

Exercise 4.7. Write a function palindrome :: String -> Bool that re-
turns True if the input string is a palindrome (a word like “radar” that is
spelled the same backwards as it is forwards), and False otherwise.

Exercise 4.8. What are the first five elements of the infinite list [9,1..]?

Exercise 4.9. Write a function cycle’ that does the same thing as the
Prelude function cycle. Use the Prelude functions repeat and concat in
your definition of cycle’, but do not use the function cycle.

Exercise 4.10. Which of the following are valid Haskell expressions? If an
expression is valid, give its type. If an expression is not valid, say what is
wrong with it.

4.4. EXERCISES 47

(a) ["hello",42]

(b) [’h’,"ello"]

(c) [’a’,’b’,’c’]

(d) length [’w’,’h’,’o’]

(e) length "hello"

(f) reverse (Hint: This is a valid Haskell expression, and has a well-
defined type, even though GHCi cannot print the expression.)

Exercise 4.11. In an arithmetic sequence, if the specified last element does
not occur in the sequence,

GHCi
[0,3..8]

 [0,3,6]

GHCi
[0,3..8.0]

 [0.0,3.0,6.0,9.0]

the result seems to depend on whether you are using whole numbers or not.
Explore this and try to find a general rule for where an arithmetic sequence
will end.

48 CHAPTER 4. LISTS

Chapter 5

Higher-order Functions

5.1 Functions with parameters

Consider the force of a linear spring with spring constant k. We usually write
this as

Fspring = −kx

where the negative sign indicates that the force acts in the direction opposite
the displacement.

Suppose we wish to write a Haskell function to give the force in Newtons
produced by a spring with spring constant 5,500 N/m. We could write

springForce5500 :: Double -> Double

springForce5500 x = -5500 * x

This is a fine function, but it only handles the force produced by a spring
with a spring constant of 5500 N/m. It would be nicer to have a function
that could handle a spring with any spring constant. Consider the following
function.

springForce :: Double -> Double -> Double

springForce k x = -k * x

The type for springForce, Double -> Double -> Double is equivalent
to Double -> (Double -> Double) meaning that if we send the springForce

49

50 CHAPTER 5. HIGHER-ORDER FUNCTIONS

function a Double (the spring constant), it will return to us a function with
type Double -> Double. This latter function wants a Double as input (the
position), and will give a Double as output (the force).

We can look at the types of these functions using GHCi’s :type command.

GHCi :l HigherOrder.lhs

GHCi
:t springForce

 springForce :: Double -> Double -> Double

Next, let’s look at the function springForce 2200.

GHCi
:t springForce 2200

 springForce 2200 :: Double -> Double

The function springForce 2200 represents the force function (input: po-
sition, output: force) for a spring with spring constant 2200 N/m. It has
the same type and plays the same role as the springForce5500 function
above. It looks funny, because it is a function made up of two parts: the
springForce part and the the 2200 part.

Finally, look at the type of springForce 2200 0.4.

GHCi
:t springForce 2200 0.4

 springForce 2200 0.4 :: Double

This is not a function, but just a Double, representing the force exerted by a
spring with spring constant 2200 N/m when extended by a distance of 0.4 m.

A function that takes another function as input or returns another func-
tion as a result is called a higher-order function. The function springForce

is a higher-order function because it returns a function as its result. Higher-
order functions give us a convenient way to define a function that takes one
or more parameters (like the spring constant) in addition to its “actual” in-
put (like the distance). Table 5.1 shows some higher-order functions from
the Prelude that return a function as output.

5.1. FUNCTIONS WITH PARAMETERS 51

Function Type
take :: Int -> [a] -> [a]

drop :: Int -> [a] -> [a]

replicate :: Int -> a -> [a]

Table 5.1: Some higher-order functions from the Prelude that produce a
function as output

Consider the higher-order function take. The function take produces a
list by taking a given number of elements from a given list. Table 5.2 shows
some examples of its use.

Expression evaluates to
take 3 [9,7,5,3,17] [9,7,5]

take 3 [3,2] [3,2]

take 4 [1..] [1,2,3,4]

take 4 [-10.0,-9.5..10] [-10.0,-9.5,-9.0,-8.5]

Table 5.2: Examples of the use of take

Let’s look at the type of take.

take :: Int -> [a] -> [a]

According to the type of take, when given an Int, it should return a
function with type [a] -> [a]. What function should take return? If we
give the integer n to take, the returned function will accept a list as input
and return a list of the first n elements of the input list.

There are two ways to think about the higher-order function take (and
others like it that return a function as output), as shown in Table 5.3.
We have already described the “1-input thinking”, in which we read the
type signature of take as expecting a single Int as input and producing an
[a] -> [a] as output. An alternative way to think about the type signature
Int -> [a] -> [a] is that what is expected is two inputs, the first of type
Int and the second of type [a], and that what is produced is an output of
type [a].

52 CHAPTER 5. HIGHER-ORDER FUNCTIONS

Way of thinking input to take output from take

1-input thinking Int [a] -> [a]

2-input thinking Int and then [a] [a]

Table 5.3: Two ways of thinking about the higher-order function take

Consider the function drop. The function drop produces a list by dis-
carding a given number of elements from a given list. Table 5.4 shows some
examples of its use.

Expression evaluates to
drop 3 [9,7,5,10,17] [10,17]

drop 3 [4,2] []

drop 37 [-10.0,-9.5..10] [8.5,9.0,9.5,10.0]

Table 5.4: Examples of the use of drop

The function replicate produces a list by repeating one item a given
number of times. Table 5.5 shows some examples of its use.

Expression evaluates to
replicate 2 False [False,False]

replicate 3 "ho" ["ho","ho","ho"]

replicate 4 5 [5,5,5,5]

replicate 3 ’x’ "xxx"

Table 5.5: Examples of the use of replicate

Table 5.6 shows two ways of thinking about the higher-order function
replicate :: Int -> a -> [a]. The “1-input” way of thinking, which is
the way that the Haskell compiler uses, regards the input as an Int and the
output as a function a -> [a]. The alternative “2-input” way of thinking
regards the inputs as an Int and an a (where a is a type variable that stands
for any type), and the output as [a].

5.2. NUMERICAL INTEGRATION 53

Way of thinking input to replicate output from replicate

1-input thinking Int a -> [a]

2-input thinking Int and then a [a]

Table 5.6: Two ways of thinking about the higher-order function replicate

In this section, we’ve focused on higher-order functions that return func-
tions as results. Now let’s take a look at a higher-order function that takes
a function as input.

5.2 Numerical integration

A numerical integrator is a great example of a higher-order function because
it takes a function as input. By numerical integration, we mean computing
the value of a definite integral of some given function over some given limits.
What we would like to be able to do is to give the computer a function f ,
give the computer limits a and b, and ask it to compute the number∫ b

a

f(x) dx.

First, we have to decide what algorithm to use to do the numerical in-
tegration. There are many to choose from, but we’ll describe a simple and
intuitively reasonable one, the trapezoidal rule.

In the trapezoidal rule, we approximate the area under a curve by the
sum of the areas of a bunch of trapezoids, as shown in figure 5.1.

For the example in the figure, the area of the first trapezoid is

1

2
[f(x) + f(x+ ∆x)]∆x.

The area of all four trapezoids in the figure is(
1

2
f(x) + f(x+ ∆x) + f(x+ 2∆x) + f(x+ 3∆x) +

1

2
f(x+ 4∆x)

)
∆x

The function trapIntegrate defined below does numerical integration.

Example 5.1. Write a definition for the function

54 CHAPTER 5. HIGHER-ORDER FUNCTIONS

x x+ ∆x x+ 2∆x x+ 3∆x x+ 4∆x

Figure 5.1: The trapezoidal rule.

trapIntegrate :: Int

-> (Double -> Double)

-> Double

-> Double

-> Double

that takes a number of trapezoids, a function, and two limits as its argu-
ments and gives back (an approximation to) the definite integral, using the
trapezoidal rule. Test your integrator on the following integrals, and see how
close you can get to the correct values.∫ 1

0

x3 dx = 0.25

∫ 10−6

0

x3 dx = 2.5× 10−25

∫ 1

0

e−x
2

dx ≈ 0.7468

Solution:

5.3. ANONYMOUS HIGHER-ORDER FUNCTIONS 55

trapIntegrate :: Int

-> (Double -> Double)

-> Double

-> Double

-> Double

trapIntegrate n f a b

= let dx = (b - a) / fromIntegral n

leftSides = [a, a+dx .. b-dx]

trapArea x = 0.5 * (f x + f (x+dx)) * dx

in sum $ map trapArea leftSides

The let keyword introduces a local variable or function that can be used
in the body after the in keyword.

Note how we use a single identifier (f) to name the function that the
user of trapIntegrate passes in. Note also that we don’t need to define the
function f; what we are doing here is naming the function that the user of
trapIntegrate is sending in.

GHCi :l HigherOrder.lhs

GHCi
trapIntegrate 100 (\x -> x**3) 0 1

 0.25002500000000044

5.3 Anonymous higher-order functions

In Section 2.3, we discussed anonymous functions as a way to describe a
function without giving it a name. We can do the same thing for higher-
order functions, describing them without giving them a name.

Let’s return to the function springForce above. How could we write
springForce without naming it? There are actually two ways to write this
function as an anonymous function, corresponding to the 1-input thinking
and 2-input thinking that we described in Section 5.1. In 1-input thinking,
we regard the input to springForce as being a number (a Double), and the
output as being a function Double -> Double. The anonymous function for
1-input thinking is shown in the first row of Table 5.7. We can see from
the form of the anonymous function that it returns a function. In 2-input
thinking, we regard the inputs to springForce as a Double for the spring

56 CHAPTER 5. HIGHER-ORDER FUNCTIONS

constant and a second Double for the position, and the output as being
simply a Double. The anonymous function for 2-input thinking is shown in
the second row of Table 5.7. We can see from the form of the anonymous
function that it returns a number. Either form is completely legitimate. In
fact the two forms describe the same function.

Way of thinking Anonymous function
1-input thinking \k -> \x -> -k*x

2-input thinking \k x -> -k*x

Table 5.7: Two ways of writing the springForce function as an anonymous
function

5.4 Mapping over lists

Table 5.8 shows some higher-order Prelude functions that take other func-
tions as input.

Function Type
map :: (a -> b) -> [a] -> [b]

iterate :: (a -> a) -> a -> [a]

Table 5.8: Some higher-order functions from the Prelude that accept a func-
tion as input

The Prelude function map is a nice example of a higher-order function that
takes another function as input. The function map will apply the function
you give to every element of the list you give. Table 5.9 shows some examples
of the use of map.

Expression evaluates to
map sqrt [1,4,9] [1.0,2.0,3.0]

map length ["Four","score","and"] [4,5,3]

map (logBase 2) [1,64,1024] [0.0,6.0,10.0]

map reverse ["Four","score"] ["ruoF","erocs"]

Table 5.9: Examples of the use of map

5.5. OPERATORS AS HIGHER-ORDER FUNCTIONS 57

In the first example in Table 5.9, we say that the function sqrt gets
“mapped” over the list, meaning that it gets applied to each element of the
list.

The Prelude function iterate is another nice example of a higher-order
function that takes a function as input. The function iterate produces
an infinite list as follows. If f :: a -> a and x :: a then iterate f a

produces the infinite list

[x, f x, f (f x), f (f (f x)), ...]

Table 5.10 shows some examples of the use of iterate.

Expression evaluates to
iterate (\n -> 2*n) 1 [1,2,4,8,...]

iterate (\n -> n*n) 1 [1,1,1,1,...]

iterate (\n -> n*n) 2 [2,4,16,256,...]

iterate (\v -> v - 9.8*0.1) 4 [4.0,3.02,2.04,1.06,...]

Table 5.10: Examples of the use of iterate

5.5 Operators as higher-order functions

In Section 1.3, we introduced a number of infix operators in Table 1.2. Any
infix operator can be converted into a higher-order function by enclosing it
in parentheses. Table 5.11 shows examples of how infix operators may be
written as higher-order functions.

Infix expression equivalent prefix expression
f . g (.) f g

’A’:"moral" (:) ’A’ "moral"

[3,9] ++ [6,7] (++) [3,9] [6,7]

True && False (&&) True False

p }} q (}}) p q

log . sqrt $ 10 ($) (log . sqrt) 10

Table 5.11: An infix operator can be transformed into a (prefix) function by
enclosing the operator in parentheses.

58 CHAPTER 5. HIGHER-ORDER FUNCTIONS

The types of the higher-order functions obtained from operators are shown
in Table 5.12.

Function Type
(.) :: (b -> c) -> (a -> b) -> a -> c

(:) :: a -> [a] -> [a]

(++) :: [a] -> [a] -> [a]

(&&) :: Bool -> Bool -> Bool

(||) :: Bool -> Bool -> Bool

($) :: (a -> b) -> a -> b

Table 5.12: Infix operators viewed as higher-order functions

5.6 Predicate-based higher-order functions

A predicate is a function with type a -> Bool, where a is any valid Haskell
type. (For example, a could be a concrete type like Int or Double -> Double,
a type variable like a, or a type that contains type variables like [a] or even
a -> [b].) A predicate expresses a property that an element of type a may
or may not have. For example, the property of an integer being greater than
or equal to seven is a predicate. We can define such a predicate in Haskell.

greaterThanOrEq7 :: Int -> Bool

greaterThanOrEq7 n = if n >= 7 then True else False

Table 5.13 shows a number of higher-order functions that take a predicate
as the first argument.

Function Type
filter :: (a -> Bool) -> [a] -> [a]

takeWhile :: (a -> Bool) -> [a] -> [a]

dropWhile :: (a -> Bool) -> [a] -> [a]

Table 5.13: Some predicate-based higher-order functions from the Prelude

Let’s examine the use of these functions. Suppose we define the following
“less than 10” predicate.

5.7. EXERCISES 59

lt10 :: Int -> Bool

lt10 n = n < 10

Table 5.14 shows examples of how to use the higher-order functions in
Table 5.13.

Expression evaluates to
filter lt10 [6,4,8,13,7] [6,4,8,7]

takeWhile lt10 [6,4,8,13,7] [6,4,8]

dropWhile lt10 [6,4,8,13,7] [13,7]

any lt10 [6,4,8,13,7] True

all lt10 [6,4,8,13,7] False

Table 5.14: Examples of the use of some predicate-based higher-order func-
tions

5.7 Exercises

Exercise 5.1. Let us return to the example of throwing a rock straight
upward. Perhaps we don’t want to throw it upward at 30 m/s, but would
like to be able to throw it upward with whatever initial velocity we choose.
Write a function

yRock :: Double -> Double -> Double

that takes as input an initial velocity and returns as output a function that
takes as input a time and returns as output a height. Also, write a function

vRock :: Double -> Double -> Double

that takes as input an initial velocity and returns as output a function
that takes as input a time and returns as output a velocity.

Exercise 5.2. Give the type of take 4.

Exercise 5.3. The function map has type (a -> b) -> [a] -> [b]. This
means that map is expecting a function with type a -> b as its first argu-
ment. The function length has type [a] -> Int. Can length be the first

60 CHAPTER 5. HIGHER-ORDER FUNCTIONS

argument to map? Ask GHCi for the type of map length. Show how, starting
from the types of map and length, you can figure out the type of map length.

Exercise 5.4. Write a function with type Int -> String -> Bool and de-
scribe in words what it does.

Exercise 5.5. Write a predicate with type Int -> Bool expressing the prop-
erty “greater than or equal to seven” without using an if-then-else construc-
tion.

Exercise 5.6. Write a predicate expressing the property “has more than
6 elements” that takes a list as input. Include a type signature with your
predicate definition.

Exercise 5.7. Table 5.5 gives examples of the use of the replicate function.
In the first three examples, a list is created with the requested length of the
requested item. In the last case, a string is created. This seems different.
Explain what is going on here.

Exercise 5.8. Make a list of the first 1000 squares. Don’t print the list;
just print your definition. You could print the first 10 squares to see if your
method is working.

Exercise 5.9. Use iterate to define a function repeat’ that does the same
thing as the Prelude function repeat.

Exercise 5.10. Use take and repeat to define a function replicate’ that
does the same thing as the Prelude function replicate.

Chapter 6

Quick Plotting

There are times when you want to make a quick plot to see what a function
looks like. Here is an example of how to do this using GHCi.

GHCi :m Graphics.Gnuplot.Simple

GHCi
plotFunc [] [0,0.1..10] cos

The first command loads a graphics module that can make graphs. (The
GHCi command :m is short for :module, which loads a module of predefined
functions.) The second command plots the function cos from 0 to 10 in
increments of 0.1. This is carried out by the plotFunc function, which is
one of the functions loaded in the Graphics.Gnuplot.Simple module. The
plotFunc function takes a list of attributes (in this case, the empty list []),
a list of values at which to compute the function (in this case, [0,0.1..10],
which is a list of 101 numbers from 0 to 10 in increments of 0.1), and a
function to plot (in this case, cos).

A hundred points is usually enough points to get a nice smooth graph. If
it’s not smooth enough for you, you could use 500 points or more. If you use
only 4 points, you won’t get a smooth graph (try it and see what happens).
You can press the key q to make the plot window disappear.

In a later section, we’ll learn how to make a nice plot with a title and
axis labels for a presentation or an assignment.

If you wish to plot a function that is defined in a program file, you have
a few choices.

61

62 CHAPTER 6. QUICK PLOTTING

Method 1: Put only the function to be plotted in the program file.

Suppose, for example, we want to plot the square function that we defined
in our first.hs program file from x = −3 to x = 3. We could issue the
following sequence of commands.

ghci> :m Graphics.Gnuplot.Simple

ghci> :l first.hs

ghci> plotFunc [] [-3,-2.99..3] square

Method 2: Use the program file to define the function to be plotted
and to load the graphing module.

If we know that a program file contains a function or functions that we will
want to plot, we can import the Graphics.Gnuplot.Simple module in the
program file so that we don’t have to do it at the GHCi command line.
Instead of typing the :m Graphics.Gnuplot.Simple line into GHCi, we can
put the following line at the top of our program file.

import Graphics.Gnuplot.Simple

Now in GHCi we do

ghci> :l first.hs

ghci> plotFunc [] [-3,-2.99..3] square

Method 3: Use the program file to load the graphing module, to
define the function to be plotted, and to define the plot.

If we know in advance what plot we want, we can include the plotting com-
mands in the program file itself. In our program file, we can define the plot

plot1 = plotFunc [] [-3,-2.99..3] square

Now to make our plot, we only need to issue the following commands in
GHCi.

ghci> :l first.hs

ghci> plot1

6.1. EXERCISES 63

6.1 Exercises

Exercise 6.1. Make a plot of sin(x) from x = −10 to x = 10.

Exercise 6.2. Make a plot of your yRock30 function from t = 0 to t = 6 s.

Exercise 6.3. Make a plot of your yRock 20 function from t = 0 to t = 4 s.
You will need to enclose yRock 20 in parentheses when you use it as an
argument to plotFunc.

64 CHAPTER 6. QUICK PLOTTING

Chapter 7

Type Classes

7.1 Introduction

Haskell is an extremely powerful programming language, in the sense that it
gives an amazing amount of expressiveness and control to the programmer
who has mastered the language. As with most powerful tools, this extreme
power comes at a cost of making the language harder to learn and more
confusing for the beginner. In this chapter, we discuss a feature of the Haskell
language, namely the notion of a type class , that is quite powerful, but which
can be confusing to someone learning the language.

Let us begin by asking GHCi about the type of the number 4.

GHCi
:t 4

 4 :: Num p => p

The number 4 is an example of a literal expression in Haskell. This is in
distinction from an expression composed of one or more names, or identifiers,
such as e, square, or yRock. It would be entirely reasonable to expect the
type of the number 4 to be Int or Integer. But the designers of the Haskell
language wanted a number like 4 to be able to be an Int, an Integer, a
Double, or even a few other types, depending on the programmer’s needs.
For this reason (and other, more compelling reasons), they invented the idea
of type classes. A type class is like a club that a type can belong to. When
you ask GHCi for the type of the number 4, it says the following.

4 :: Num a => a

65

66 CHAPTER 7. TYPE CLASSES

This should be read, “for every type a that is an instance of the class
Num, 4 has type a” or “4 has type a as long as a is in type class Num”. This
says that the number 4 can have any type a as long as a belongs to the type
class Num (short for number). The letter a is a type variable in this type
signature. It can stand for any type. The stuff to the left of => are type class
constraints. In the type signature above, there is one type class constraint,
Num a. This says that a must belong to type class Num. As with concrete
types (such as Int and Double -> Double), we use blue to indicate type
variables. We use green to indicate type classes.

The types Int, Integer, and Double are all instances (which is to say
members) of the type class Num. So, the line 4 :: Num a => a can be read
“as long as a is an instance of type class Num, the item 4 has type a.”

Basically, GHCi hasn’t committed to a particular type for the number 4

yet. But this noncommittal attitude about the type of 4 can’t go on forever.
At some point, the Haskell compiler will demand that every item have a well-
defined type. The lack of a well-defined type for something can be a source
of trouble. GHCi has some type-defaulting rules to make our life easier. For
example, if you put the line

x = 4

into a program file (say typetest.hs), giving x no type signature, load it
into GHCi, and then ask for the type of x,

GHCi :l typetest.hs

GHCi
:t x

 x :: Integer

GHCi will tell you that x has type Integer. So, here GHCi has committed
to a particular type without our specifying the type.

There are other situations, and you will come across them soon enough,
where GHCi feels unable to assign a type, and you will need to help it out
by adding type signatures to your code.

7.2 Type classes from the Prelude

Table 7.1 shows (in the left column) a number of type classes provided by the
Prelude. Also shown in this table are which of the basic types are instances

7.2. TYPE CLASSES FROM THE PRELUDE 67

of each of the type classes.

Type class Bool Char Int Integer Float Double

Eq X X X X X X
Ord X X X X X X
Show X X X X X X
Num X X X X
Integral X X
Fractional X X
Floating X X

Table 7.1: Table showing which basic types are instances of various type
classes

7.2.1 Type class Eq

Type class Eq is for types that have a notion of equality (in other words,
types for which the operators == and /= are defined). You can see in Table
7.1 that all of the six basic types Bool, Char, Int, Integer, Float, and
Double are instances of Eq. The type of the function (==) is

GHCi
:t (==)

 (==) :: Eq a => a -> a -> Bool

which means that the operator == can be used between any two expressions
of the same type a, as long as a is an instance of Eq. What sort of type
would not be an instance of Eq? Generally function types are not instances
of Eq. For example, the type Double -> Double is not an instance of Eq.
The reason is that it is usually difficult or impossible to check whether two
functions are equal.

From the perspective of computational physics, it is a bad idea that Float
and Double are instances of Eq. Because these two types are used for ap-
proximate calculation, you should never test Floats and Doubles for equality.
From the perspective of the computer, these types are each represented by a
finite number of bits, and the computer will happily can check whether each
bit of one Double is the same as the corresponding bit of another Double.
But as we saw in section 1.6, the bits of sqrt 5 ^ 2 are not the same as the
bits of 5. They are very close, but not the same. The take home message

68 CHAPTER 7. TYPE CLASSES

for computational physics is to avoid using == for approximate types like
Double.

7.2.2 Type class Ord

Type class Ord is for types that have a notion of order (in other words, types
for which the operators <, <=, >, and >=, are defined). A type must first
be an instance of Eq before it may be an instance of Ord. The type of the
function (<) is

GHCi
:t (<)

 (<) :: Ord a => a -> a -> Bool

which means that the operator < can be used between any two expressions
of the same type a, as long as a is an instance of Ord.

7.2.3 Type class Show

Type class Show is for types whose elements can be shown on the screen.
Function types are not typically instances of Show. If I type the name of a
function at the GHCi prompt,

GHCi
sqrt

 <interactive>:6:1: error: No instance for (Show (Double -> Double)) arising from a use of print (maybe you haven’t applied a function to enough arguments?) In a stmt of an interactive GHCi command: print it

Prelude> sqrt

I get an error like the following.

<interactive>:2:1:

No instance for (Show (a0 -> a0)) arising from a use of print

In a stmt of an interactive GHCi command: print it

This error complains that there is no Show instance for sqrt. GHCi knows
how to apply the sqrt function to numbers and show you the result, but it
does not know how to show you the sqrt function itself. Note that sqrt

is a perfectly acceptable Haskell expression, with a well-defined type, even
though it cannot be shown.

7.2. TYPE CLASSES FROM THE PRELUDE 69

7.2.4 Type class Num

Type class Num is for numeric types. You can see in Table 7.1 that the types
Int, Integer, Float, and Double are instances of Num, while Bool and Char

are not. The type of the function (+) is

(+) :: Num a => a -> a -> a

meaning that the operator + can be used between any two expressions of the
same type a, as long as a is an instance of Num, and the result will be an
expression of type a.

7.2.5 Type class Integral

Type class Integral is for types that behave like integers. A type must first
be an instance of Num before it may be an instance of Integral. You can
see in Table 7.1 that the types Int and Integer are instances of Integral,
while Float and Double are not. The type of the function rem, which finds
the remainder of one integer divided by another, is

rem :: Integral a => a -> a -> a

meaning that the function rem can be used between any two expressions of
the same type a, as long as a is an instance of Integral, and the result will
be an expression of type a.

7.2.6 Type class Fractional

Type class Fractional is for numeric types that support division. A type
must first be an instance of Num before it may be an instance of Fractional.
You can see in Table 7.1 that the types Float and Double are instances of
Fractional, while Int and Integer are not. The type of the function (/)

is

(/) :: Fractional a => a -> a -> a

meaning that the operator / can be used between any two expressions of the
same type a, as long as a is an instance of Fractional, and the result will
be an expression of type a.

70 CHAPTER 7. TYPE CLASSES

Floating

• Float

• Double

FractionalIntegral

• Int

• Integer

Num

Figure 7.1: Relationship among the numeric type classes Num, Integral,
Fractional, and Floating. Types Int and Integer are instances of type
classes Integral and Num. Types Float and Double are instances of type
classes Floating, Fractional, and Num.

7.2.7 Type class Floating

Type class Floating is for numeric types that are stored by the computer
as “floating point” numbers, that is, inexact approximations. A type must
first be an instance of Fractional before it may be an instance of Floating.
You can see in Table 7.1 that the types Float and Double are instances of
Floating, while Int and Integer are not. The type of the function cos is

GHCi
:t cos

 cos :: Floating a => a -> a

meaning that the function cos can be used on any expression of the type a,
as long as a is an instance of Floating, and the result will be an expression
of type a.

Figure 7.1 shows the relationship among the numeric type classes we have
just discussed.

7.3. PRELUDE FUNCTIONS WITH TYPE CLASS CONSTRAINTS 71

7.3 Prelude functions with type class con-

straints

Table 7.2 shows some Prelude functions with type class constraints.

Function Type
div, mod, quot, rem Integral a => a -> a -> a

(==),(/=) Eq a => a -> a -> Bool

(<),(>),(<=),(>=) Ord a => a -> a -> Bool

(+),(-),(*) Num a => a -> a -> a

(/) Fractional a => a -> a -> a

abs Num a => a -> a

sin, exp Floating a => a -> a

(^) (Integral b, Num a) => a -> b -> a

(^^) (Fractional a, Integral b) => a -> b -> a

(**) Floating a => a -> a -> a

Table 7.2: Some Prelude functions with type class constraints

7.4 Sections

An infix operator expects an argument on its left and an argument on its
right. If only one of these two arguments were given, the resulting expression
could be thought of as a function waiting for the other argument. Haskell
allows us to make such functions by enclosing in parentheses an operator and
one of its arguments. Examples are shown in Table 7.3. A function formed
by enclosing an operator and one argument in parentheses is called a section.

72 CHAPTER 7. TYPE CLASSES

Function Type
(+1) Num a => a -> a

(2*) Num a => a -> a

(. length) (Int -> c) -> [a] -> c

(’A’:) [Char] -> [Char]

(:"end") Char -> [Char]

("I won’t " ++) [Char] -> [Char]

($ True) (Bool -> b) -> b

Table 7.3: Examples of the use of sections

For example, (+1) (which could also be written (1+)) is a function that
adds one to its argument, and (2*) (which could also be written (*2)) is a
function that doubles its argument.

7.5 Higher-order functions as operators

You can make a higher-order function into an infix operator by enclosing it
in backquotes. For example, consider the Prelude function elem.

GHCi
:t elem

 elem :: (Foldable t, Eq a) => a -> t a -> Bool

elem :: Eq a => a -> [a] -> Bool

The function elem takes an element of type a, a list of as, and tells whether
the element is in the list. The Eq a type class constraint exists because type
a needs to have a sense of equality for this to work. Table 7.4 shows examples
of the use of elem.

Expression evaluates to
elem 7 [7,14,21] True

elem 8 [7,14,21] False

elem 14 [7,14,21] True

7 ‘elem‘ [7,14,21] True

8 ‘elem‘ [7,14,21] False

14 ‘elem‘ [7,14,21] True

Table 7.4: Examples of the use of the elem function

7.6. EXAMPLE OF TYPE CLASSES AND PLOTTING 73

Of particular interest are the last three entries in the table, in which the
function has been enclosed in backquotes and used as an infix operator.

7.6 Example of type classes and plotting

As an example, create a new program file called typeTrouble.hs with the
following code.

import Graphics.Gnuplot.Simple

plot1 = plotFunc [] [0,0.01..10] cos

When I try to load this file into GHCi, I get the following horrible-looking
error message.

typeTrouble.hs:3:8:

Ambiguous type variable ‘t’ in the constraints:

‘Graphics.Gnuplot.Value.Tuple.C t’

arising from a use of ‘plotFunc’ at typeTrouble.hs:3:8-35

‘Graphics.Gnuplot.Value.Atom.C t’

arising from a use of ‘plotFunc’ at typeTrouble.hs:3:8-35

‘Floating t’ arising from a use of ‘cos’ at typeTrouble.hs:3:33-35

‘Enum t’

arising from the arithmetic sequence ‘0, 1.0e-2 .. 10’

at typeTrouble.hs:3:20-31

Probable fix: add a type signature that fixes these type variable(s)

First of all, don’t panic. This error message contains much more information
than we need to solve the problem. The most useful parts of the message are
the first and last lines. The first line tells where the problem is in the code
(line 3, column 8). At line 3, column 8 of our code is the function plotFunc.
Let’s look at the type of plotFunc.

ghci> :t plotFunc

Hmmm. Life just got worse. I get an error like this.

<interactive>:1:0: Not in scope: ‘plotFunc’

74 CHAPTER 7. TYPE CLASSES

Now, this latter error is an easy one. “Not in scope” means that GHCi
claims no knowledge of this function. That makes sense, actually, because
it’s not included in the Prelude (the collection of built-in functions that are
loaded automatically when we start up GHCi), and GHCi refused to load our
typeTrouble.hs file because it had a problem with it. So, at the moment, it
has no knowledge of plotFunc. Function plotFunc is defined in the module
Graphics.Gnuplot.Simple. We can get access to plotFunc by loading the
plotting module manually, like we first did to make a quick plot.

ghci> :m Graphics.Gnuplot.Simple

Now, let’s ask again for the type of plotFunc

ghci> :t plotFunc

Here’s what I get.

plotFunc

:: (Graphics.Gnuplot.Value.Atom.C a,

Graphics.Gnuplot.Value.Tuple.C a) =>

[Attribute] -> [a] -> (a -> a) -> IO ()

There are a couple of type class constraints to the left of the =>. I don’t
know what those type classes are, but as long as a (a type variable) belongs
to those two type classes, the type of plotFunc is

[Attribute] -> [a] -> (a -> a) -> IO ()

In other words, plotFunc needs a list of Attributes (we have given an empty
list in our examples so far), a list of as, and a function that takes an a as
input and gives back an a as output. If we give plotFunc all this stuff, it
will give us back an IO (), which is a way of saying that it will actually do
something for us (make a plot). Now, we would be perfectly happy if the
type of plotFunc was

[Attribute] -> [Double] -> (Double -> Double) -> IO ()

without those crazy type class constraints.
Let’s return to the horrible-looking error message and focus on the last

line.

Probable fix: add a type signature that fixes these type variable(s)

7.6. EXAMPLE OF TYPE CLASSES AND PLOTTING 75

This tells us that the Haskell compiler would like more help figuring out the
types of things. In particular, it can’t figure out the types of [0,0.01..10]
and cos. Let’s ask GHCi about the types of these two.

ghci> :t [0,0.01..10]

I get

[0,0.01..10] :: (Fractional t, Enum t) => [t]

containing more type class gobbledygook. For

ghci> :t cos

I get

cos :: (Floating a) => a -> a

which also is type-class-constraint-laden.
One solution to the problem is to give the list [0,0.01..10] a name and

a type signature. Make a program file typeTrouble2.hs with the following
lines.

import Graphics.Gnuplot.Simple

xRange :: [Double]

xRange = [0,0.01..10]

plot2 = plotFunc [] xRange cos

This program file should load fine and give you a nice plot when you type
plot2. Try it and see.

Another solution is to specify the type of the list [0,0.01..10] on the line
where it’s used. Make a program file typeTrouble3.hs with the following
lines.

import Graphics.Gnuplot.Simple

plot3 = plotFunc [] ([0,0.01..10] :: [Double]) cos

76 CHAPTER 7. TYPE CLASSES

Yet another solution is to tell the compiler that the final element of the
list, 10, has type Double. This implies that all of the elements in the list
have type Double.

import Graphics.Gnuplot.Simple

plot4 = plotFunc [] [0,0.01..10 :: Double] cos

The moral of the story is that you should include type signatures for all
of the functions you define, and you should be prepared to add more type
signatures if the compiler complains.

7.7 Exercises

Exercise 7.1. Is it possible for a type to belong to more than one type class?
If so, give an example. If not, why not?

Exercise 7.2. We said in this chapter that function types are typically not
instances of Eq, because it is too hard to check whether two functions are
equal.

(a) What does it mean mathematically for two functions to be equal?

(b) Why is it usually very hard or impossible for the computer to check if
two functions are equal?

(c) Give a specific example of a function type that would be easy to check
for equality.

Exercise 7.3. The function (*2) is the same as the function (2*). Is the
function (/2) the same as the function (2/)? Explain what these functions
do.

Exercise 7.4. In section 2.1, we defined a function square. Now that we
know that Haskell has sections, we can see that we didn’t need to defined
square. Show how to use a section to write the function that squares its
argument.

Exercise 7.5. You can get information from GHCi about a type or a type
class by using the GHCi command :info (:i for short), followed by the name

7.7. EXERCISES 77

of the type or type class you want information about. If you ask for infor-
mation about a type, GHCi will tell you the type classes of which your type
is an instance (the line instance Num Double, for example, means that the
type Double is an instance of the type class Num). If you ask for information
about a type class, GHCi will tell you the types which are instances of your
type class.

(a) We showed in Table 7.1 the the type Integer was an instance of type
classes Eq, Ord, Show, Num, and Integral. There are a few more type
classes that we did not discuss of which Integer is also an instance.
Find these.

(b) Type class Enum is for types that can be enumerated, or listed. Which
Prelude types are instances of Enum?

Exercise 7.6. Find the types of the following Prelude Haskell expressions
(some are functions and some are not).

1. 42

2. 42.0

3. 42.5

4. pi

5. [3,1,4]

6. [3,3.5,4]

7. [3,3.1,pi]

8. (==)

9. (/=)

10. (<)

11. (<=)

12. (+)

13. (-)

78 CHAPTER 7. TYPE CLASSES

14. (*)

15. (/)

16. (^)

17. (**)

18. 8/4

19. sqrt

20. cos

21. show

22. (2/)

Exercise 7.7. If 8/4 = 2, and 2 :: Num a => a (2 has type a for every
type a in type class Num) then why does 8/4 :: Fractional a => a?

Chapter 8

Tuples

Haskell provides several ways of constructing new types from old. Given
types a and b, we have already seen that there is a function type a -> b.
Tuples are an even simpler way to construct new types from old. Given types
a and b, there is a pair type (a,b) that serves as the type for ordered pairs in
which the first item in the pair has type a and the second has type b. Given
a further type c, there is a triple type (a,b,c) for ordered triples. Similarly,
there are tuple types constructed from 4, 5, or more types. The types from
which a tuple is constructed could be different, but they need not be.

{-# OPTIONS -Wall #-}

8.1 Pairs

The simplest tuple is the pair. A pair is a combination of two values that
already have types.

For example, here is a pair composed of a String to describe a person’s
name, and an Int to represent the person’s score on an exam.

nameScore :: (String,Int)

nameScore = ("Albert Einstein", 79)

You see that the first component of a pair needs to have a well-defined
type, and the second component of a pair also needs a type, but they need
not be the same type.

79

80 CHAPTER 8. TUPLES

Let’s write a function pythag1 that computes the hypotenuse of a right
triangle from the lengths of the two sides. We’ll pass the two side lengths to
the function using a pair. Here is one way to write this function.

pythag1 :: (Double,Double) -> Double

pythag1 (a,b) = sqrt (a**2 + b**2)

The type signature above shows us that pythag1 expects a pair of two
Doubles as input, and produces a Double as output. The fact that in the
second line we call the input (a,b) (rather than a simple variable like x)
means that this definition uses pattern matching. This is similar to the
pattern matching we saw earlier for Bool and for lists. Pattern matching for
tuples is simple because there is only one pattern. (Recall that Bool has two
patterns, True and False, and that lists have two patterns, the emply list
[], and the cons of an element and a list x:xs.)

There are a couple of Prelude functions to deal with pairs. The fst

function takes a pair as input and returns the first component of the pair
as output. The snd function takes a pair as input and returns the second
component of the pair as output. We can test this behavior in GHCi.

ghci> fst ("Albert Einstein", 79)

These two helper functions allow us to write an alternative version of pythag1
that does the same thing.

pythag1’ :: (Double,Double) -> Double

pythag1’ pr = sqrt ((fst pr)**2 + (snd pr)**2)

The function pythag1’ takes a simple variable as input; hence this func-
tion does not use pattern matching.

8.2 Functions of two variables

All Haskell functions have one input and one output. How then could we
write a function of two variables, like

f(x, y) =
√
x2 + y2?

8.2. FUNCTIONS OF TWO VARIABLES 81

There are two ways to do this. One way is to use a tuple (a pair) as the
input.

f :: (Double,Double) -> Double

f (x,y) = sqrt (x**2 + y**2)

Haskell regards a tuple as one thing, so Haskell thinks that the function
f has one input (a (Double,Double)) and one output (a Double). Let’s call
this the tuple form of a function of two variables.

A second way to make a function of two variables is to use a higher-
order function, as described in Section 5.1. In this way, we would encode the
function

g(x, y) =
√
x2 + y2

as

g :: Double -> Double -> Double

g x y = sqrt (x**2 + y**2)

In this case, Haskell thinks that the one input to g is a Double, and that
the one output of g is a Double -> Double (that is, a function from Double

to Double). But you can think of g as a function of two variables, that
accepts two Doubles and returns a Double. Let’s call this the curried form
of a function of two variables.

These two ways of encoding a function of two variables (the tuple form
and the curried form) are mutually exclusive. You need to pick one or the
other for a particular function; you can’t use both. Notice that the tuple
form requires the use of parentheses and a comma around the two arguments.
That’s because you need to have a tuple as input! Notice that the curried
form has no parentheses and no comma. It’s not that the comma is optional;
it must not be present.

Sometimes you might use one form, and realize later on that you wish you
had used the other form. Haskell provides two functions to let you convert
from one form to the other and back. To convert from tuple form to curried
form, Haskell provides the function curry. We could write curry f and this
would be exactly the same function as the g that we defined above. We can
also write uncurry g, and this is the same as the function f. It does not

82 CHAPTER 8. TUPLES

make sense to write curry g or uncurry f; these constructions will produce
type errors when the compiler tries to read them.

Take a look at the types for curry and uncurry. They might look like
nonsense the first time you see them, but it’s worth spending time to under-
stand why they have the types they have. See if you can explain to yourself
why they have the types they do.

8.3 Triples

In addition to pairs, you can make triples, or tuples with even more compo-
nents. However, the functions fst and snd work only with pairs. To access
elements of triples and larger tuples, the standard method is to use pattern
matching. For example, functions that pick out the components of triples
can be defined as follows.

fst3 :: (a,b,c) -> a

fst3 (x,y,z) = x

snd3 :: (a,b,c) -> b

snd3 (_,y,_) = y

thd3 :: (a,b,c) -> c

thd3 (_x,_y,z) = z

The definitions of fst3, snd3, and thd3 use pattern matching to assign
names to the items in the triple. These names can then be used on the right-
hand side of the definition to indicate the value that we want the function to
return. In the function fst3, the values y and z are not used. Because they
are not used, it is in some sense superfluous to give them names.

In the definition of snd3, the underscore _ is used as a place holder to
represent a quantity that doesn’t get used in the expression that follows. In
the definition of snd3, we use underscores in the first and third slots of the
triple. The point is that it is superfluous to give these items names since the
names are not used in the definition.

In the definition of thd3, we show an alternate use of underscores.

Compiler warning.

8.4. COMPARISON OF LISTS AND TUPLES 83

8.4 Comparison of lists and tuples

A tuple is different from a list in that every element of a list must have the
same type. On the other hand, the type of a tuple says exactly how many
elements the tuple has. If an expression has type [Int], for example, it is a
list of zero, one, two, or more Ints. If an expression has type (String,Int),
it is a pair (2-tuple) consisting of exactly one String and exactly one Int. If
you want to combine exactly two things or exactly three things, then a tuple
is what you want. Beyond three items, tuples rapidly become unwieldy.
Lists, on the other hand, are often very long. A list can happily contain
thousands of elements.

8.5 Maybe types

The idea of Maybe types is independent of the idea of tuples. The only reason
for introducing it here in this chapter on tuples is that I want to use it in the
next section.

We saw in Chapter 4 on lists that for any type a there is another type
[a] consisting of lists of elements that each have type a. Such a list may
have zero, one, two, or more elements of type a.

In an analogous way, for any type a there is another type Maybe a con-
sisting of zero or one element of type a. To motivate this new data type,
imagine that you are writing a function findFirst that will search through
a list for the first element that meets some criterion. We might wish such a
function to have type [b] -> b.

findFirst :: [b] -> b

The type [b] -> b indicates our intent to have the function findFirst

accept a list of elements of type b as input and provide a single element of
type b as output. But what if the list contains no element that meets our
criterion? In that case there is a problem because the function findFirst

has no way to come up with an element of type b, but the type [b] -> b

demands that the function return (produce) an element of type b. One
possibly is for findFirst give an error if no suitable element is found,
but this is an extreme measure, and will halt the program, so that no later
recovery is possible. A better solution is to use a different type signature.

84 CHAPTER 8. TUPLES

findFirst’ :: [b] -> Maybe b

If findFirst’ finds an element x :: b that meets the criterion, it will
return Just x. If it finds no element of type b that meets the criterion,
findFirst’ will return Nothing.

Type type Maybe a has two patterns. (Recall that Bool has two patterns,
lists have two patterns, and tuples have one pattern.) An element of Maybe a

is either Nothing or Just x for some x :: a. The element Nothing is the
way of specifying zero elements of type a, and the element Just x is the
way of specifying one element of type a (namely x). Table 8.1 shows some
expressions involving Maybe and their types. Table 8.2 shows a comparison
of expressions having Maybe types with expressions having the underlying
type.

Expression Type
Nothing Maybe a

Just "me" Maybe String

Just ’X’ Maybe Char

Just False Maybe Bool

Just 4 Num a => Maybe a

Table 8.1: Some expressions involving Maybe and their types.

Finally, we should point out that Maybe Int is a type, Maybe Bool is a
type, and Maybe Double is a type, but Maybe itself is not a type. Maybe is
called a type constructor . A type constructor is an object that takes one
type as input and produces another type as output. We think of Maybe as
taking the type Int as input and producing the type Maybe Int as output.
In other words, Maybe is a function at the type level. In order to keep track
of this complexity, Haskell assigns a kind to each type and type constuctor.
A type, such as Double has kind *. GHCi has the command :kind (or :k

for short) to ask about the kind of something.

GHCi
:k Double

 Double :: *

A type constructor, such as Maybe, has kind * -> *.

8.6. LISTS OF PAIRS 85

Type Expressions with this type
Bool False, True
Maybe Bool Just False, Just True, Nothing
Char ’h’, ’7’
Maybe Char Just ’h’, Just ’7’, Nothing
String "Monday", "Tuesday"
Maybe String Just "Monday", Just "Tuesday", Nothing
Int 3, 7, -13
Maybe Int Just 3, Just 7, Just (-13), Nothing

Table 8.2: Comparison of expressions having Maybe types with expressions
having the underlying type.

GHCi
:k Maybe

 Maybe :: * -> *

Once we apply Maybe to Double, the resulting Maybe Double is once
again a type, with kind *.

GHCi
:k Maybe Double

 Maybe Double :: *

Types have kind *, type constructors have kind * -> *, and there are
objects with more complicated kinds as well.

While we are talking about kinds, it is interesting to note that you can
ask GHCi for the kind of a type class.

GHCi
:k Num

 Num :: * -> Constraint

This kind means that, when provided with a type, the type class Num produces
a constraint.

8.6 Lists of pairs

Just as we can form lists of lists, we can make pairs of pairs, lists of pairs,
pairs of lists, and more complicated things. Probably the list of pairs is the
most useful of these (although lists of lists are very useful), for reasons we
will see below.

The Prelude function

86 CHAPTER 8. TUPLES

zip :: [a] -> [b] -> [(a, b)]

takes two lists and forms a list of pairs. The function zip pairs the first
elements of the two lists, the second elements of the two lists, and so on.
Table 8.3 shows examples of the use of zip.

The Prelude function

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]

is a high-power relative of zip that actually does something with the pairs
of elements that zip generates. The first argument to zipWith is a higher-
order function that describes what to do with an element of type a (from
the first list) and an element of type b (from the second list). The second
argument to zipWith is the first list, and the third argument to zipWith is
the second list. Table 8.3 shows examples of the use of zipWith.

Expression evaluates to
zip [1,2,3] [4,5,6] [(1,4),(2,5),(3,6)]

zip [5..7] "who" [(5,’w’),(6,’h’),(7,’o’)]

zipWith (+) [1,2,3] [4,5,6] [5,7,9]

zipWith (-) [1,2,3] [4,5,6] [-3,-3,-3]

zipWith (*) [1,2,3] [4,5,6] [4,10,18]

Table 8.3: Examples of zip and zipWith.

The Prelude function

unzip :: [(a, b)] -> ([a], [b])

takes a lists of pairs and turns it into a pair of lists.
One use for a list of pairs is a lookup table. In a lookup table, the first

item of each pair serves as a key and the second item of each pair serves as
a value. Such a pair is referred to as a key-value pair . The following list of
pairs is intended to serve as a lookup table.

8.7. EXERCISES 87

grades :: [(String, Int)]

grades = [("Albert Einstein", 89)

, ("Isaac Newton" , 95)

, ("Alan Turing" , 91)

]

The Prelude function

lookup :: Eq a => a -> [(a, b)] -> Maybe b

is designed to be given a key and a lookup table, and will return the
corresponding value, if there is one.

8.7 Exercises

Exercise 8.1. Write a function

polarToCart :: (Double,Double) -> (Double,Double)

that takes as input polar coordinates (r, θ), with θ in radians, and returns
as output a pair (x, y) of Cartesian coordinates.

Exercise 8.2. What are the types of fst and snd? Do these types make
sense?

Exercise 8.3. What are the types of curry and uncurry?

Exercise 8.4. The Prelude function

head :: [a] -> a

is slightly problematic in that it causes a run-time error if it is passed an
empty list. Write a function

88 CHAPTER 8. TUPLES

headSafe :: [a] -> Maybe a

headSafe = undefined

that returns Nothing if passed the empty list and Just x otherwise, where
x is the first element (the head) of the given list.

Exercise 8.5. We mentioned above that the type Maybe a is a bit like the
type [a], except that elements of Maybe a are constrained to have zero or
one element. To make this analogy precise, write a function

maybeToList :: Maybe a -> [a]

maybeList = undefined

that makes a list out of a Maybe type. What list should Nothing map to?
What list should Just x map to?

Exercise 8.6. Find out and explain what happens when zip is used with
two lists that don’t have the same length.

Exercise 8.7. Define a function

zip’ :: ([a], [b]) -> [(a, b)]

zip’ = undefined

that turns a pair of lists into a list of pairs. (Hint: consider using curry

or uncurry.)

Exercise 8.8. The dot operator (.) is for function composition. If we do
unzip followed by zip’, we have a function with the following type signature.

zip’ . unzip :: [(a, b)] -> [(a, b)]

Is this the identity function? (In other words, does it always return the
expression it was given?) If so, how do you know? If not, give a counterex-
ample.

If we do zip’ followed by unzip, we have a function with the following
type signature.

8.7. EXERCISES 89

unzip . zip’ :: ([a], [b]) -> ([a], [b])

Is this the identity function?

Exercise 8.9. Using the grades lookup table above, show how to use the
lookup function to produce the value Just 89. Also show how to use the
lookup function to produce the value Nothing.

Exercise 8.10. Translate the following mathematical function into Haskell.

x(r, θ, φ) = r sin θ cosφ

Use a triple for the input to the function x. Give a type signature as well as
a function definition.

90 CHAPTER 8. TUPLES

Chapter 9

List Comprehensions

9.1 Mapping

Haskell offers a powerful way to make new lists out of old lists. Suppose you
have a list of times (in seconds)

ts :: [Double]

ts = [0,0.1..6]

and you want to have a list of positions for a rock that you threw up in
the air at 30 m/s, each position corresponding to one of the times in the time
list. In Exercise 2.2, you wrote a function yRock30 to produce the position
of the rock when given the time. Perhaps your function looked something
like the following.

yRock30 :: Double -> Double

yRock30 t = 30 * t - 0.5 * 9.8 * t**2

The code below produces the desired list of positions.

xs :: [Double]

xs = [yRock30 t | t <- ts]

The definition of xs is an example of a list comprehension. It says that
for each t in ts, it will compute yRock30 t and form a list of the resulting

91

92 CHAPTER 9. LIST COMPREHENSIONS

values. The list xs of positions will be the same length as the original list ts
of times.

Notice that we can create the same list as xs using map.

xs’ :: [Double]

xs’ = map yRock30 ts

We will find use for the list comprehension in forming lists of pairs
(x, y) of numbers we want to plot. In Chapter 10, we will meet a plot-
ting function plotPath that takes as input a list of pairs of numbers, usually
[(Double,Double)], and produces a plot. We can use list comprehensions
to transform our data into a form suitable for plotting. If we wanted to plot
position as a function of time, we could form a list of time-position pairs as
follows.

txPairs :: [(Double,Double)]

txPairs = [(t,yRock30 t) | t <- ts]

Again, this can also be done with map.

txPairs’ :: [(Double,Double)]

txPairs’ = map (\t -> (t,yRock30 t)) ts

9.2 Filtering

In addition to performing the function of mapping, a list comprehension can
filter data based on a Boolean expression. Let’s continue our example of
forming a list of time-position pairs with yRock30. Suppose we only want to
have pairs in our list while the rock is in the air (y > 0).

txPairsInAir :: [(Double,Double)]

txPairsInAir

= [(t,yRock30 t) | t <- [0,0.1..20], yRock30 t > 0]

9.2. FILTERING 93

After we give the list from which the values of t are to come, we put a
comma and then the Boolean expression to use for filtering. The computer
will form a list as before, but now only keep values for which the Boolean
expression returns True.

We can achieve the same effect with a combination of map and filter.
We can do the filtering first,

txPairsInAir’ :: [(Double,Double)]

txPairsInAir’

= map (\t -> (t,yRock30 t)) $

filter (\t -> yRock30 t > 0) [0,0.1..20]

or we can do the mapping first.

txPairsInAir’’ :: [(Double,Double)]

txPairsInAir’’

= filter (\(_t,y) -> y > 0) $

map (\t -> (t,yRock30 t)) [0,0.1..20]

The application operator $ from Table 1.2 has a precedence of 0, so the
expressions on each side of it are evaluated before they are combined. In this
way, the application operator serves as a kind of one-symbol parentheses.
The same effect could have been produced by enclosing the entire map line
above in parentheses.

Note the use of the underscore _ in the anonymous function above. Since
the conditional expression only depends on the second item in the pair, there
is no need to give a name to the first item in the pair.

The following three anonymous functions are equivalent from the per-
spective of the compiler.

(a) \(t,y) -> y > 0

(b) \(_,y) -> y > 0

(c) \(_t,y) -> y > 0

Anonymous function (a) gives the name t to the first item in the pair that it
acts on. Since the conditional that follows doesn’t use t, it was unnecessary

94 CHAPTER 9. LIST COMPREHENSIONS

to name it. Anonymous function (b) gives no name to the first item in the
pair that it acts on. We are showing in our code that we don’t care about
that first item. Anonymous function (c) gives no name to the first item in the
pair that it acts on. The compiler ignores characters that come immediately
after the underscore. I used _t above to remind myself that the first item
in the pair represents time, and also to remind myself that the time is not
used in the conditional expression. Since the three expressions t, _, and _t

produce the same effect, you are free to choose the style you like best.

9.3 Exercises

Exercise 9.1. Write the following function using a list comprehension rather
than a map.

pick13 :: [(Double,Double,Double)] -> [(Double,Double)]

pick13 triples = map (\(x1,_,x3) -> (x1,x3)) triples

Exercise 9.2. List comprehensions can be used as an alternative to the map

function. To prove this, write a function

map’ :: (a -> b) -> [a] -> [b]

That does the same thing as map. Use a list comprehension to write your
definition.

Exercise 9.3. Suppose we throw a rock straight up in the air at 15 m/s.
Use a list comprehension to make a list of (time, position, velocity) triples
(type [(Double,Double,Double)]) for an interval of time while the rock is
in the air. Your list should have enough triples so that the data would make
a reasonably smooth graph if it were to be plotted.

Exercise 9.4. List comprehensions can be used as an alternative to the
filter function. To prove this, write a function

filter’ :: (a -> Bool) -> [a] -> [a]

That does the same thing as filter. Use a list comprehension to write
your definition.

Chapter 10

Presentation Plotting

When you make a graph for a formal report, you want to have titles, axis
labels, and perhaps other features that will help the reader understand what
you are trying to say.

10.1 Title and axis labels

Consider the following code.

{-# OPTIONS_GHC -Wall #-}

import Graphics.Gnuplot.Simple

type R = Double

tRange :: [R]

tRange = [0,0.01..5]

yPos :: R -- y0

-> R -- vy0

-> R -- ay

-> R -- t

-> R -- y

yPos y0 vy0 ay t = y0 + vy0 * t + ay * t**2 / 2

95

96 CHAPTER 10. PRESENTATION PLOTTING

plot1 :: IO ()

plot1 = plotFunc [Title "Projectile Motion"

,XLabel "Time (s)"

,YLabel "Height of projectile (m)"

,PNG "projectile.png"

,Key Nothing

] tRange (yPos 0 20 (-9.8))

The very first line turns on warnings, which I like to do to catch any
poor programming I might not have intended. The second line imports the
Graphics.Gnuplot.Simple module, which we use to make plots. The third
line sets up R as a type synonym for Double, so that I can think of Doubles
as real numbers, and call them by the short name R. We then define a list
tRange of time values that we will use in our plot. We define a function yPos

for the height of a projectile. Finally, we define plot1 to make a plot. Notice
the type IO () (pronounced “eye oh unit”) of plot1. IO is a type constructor
(like Maybe) that has the special job of signaling that plot1 returns a result
of type () (pronounced “unit”) and also performs some effect, in this case
producing a file containing a plot. The type () only contains one term ()

(also called “unit”), so it can’t convey any actual information. Anything
with type IO () is something that is done only for its effect.

If you load this code into GHCi and type plot1 at the prompt, it will
produce a file projectile.png on your hard drive that you can include in a
document. Here is what it looks like.

10.2. OTHER LABELS 97

Recall that plotFunc has type [Attribute] -> [a] -> (a -> a) -> IO

() where a is a type in some specialized type classes. The Attribute type is
defined in the Graphics.Gnuplot.Simple module. If you type :i Attribute

at the GHCi prompt, (:i is short for :info) you’ll see some options for
what you can do with these Attributes. Function plotFunc takes a list of
Attributes, and we are putting items in this list to produce the title and
axis labels.

10.2 Other labels

You may want to put other labels on a plot. Here is how you can do this.

plot1Custom :: IO ()

plot1Custom

= plotFunc [Title "Projectile Motion"

,XLabel "Time (s)"

,YLabel "Height of projectile (m)"

,PNG "CustomLabel.png"

,Key Nothing

98 CHAPTER 10. PRESENTATION PLOTTING

,Custom "label" ["\"Peak Height\" at 1.5,22"]

] tRange (yPos 0 20 (-9.8))

Note the Custom attribute that we added. The backslash in front of the
quotes is because we need to pass quotes inside of quotes. The coordinates
1.5,22 are the horizontal and vertical coordinates on the graph where we want
the label to appear. Here is what it looks like.

10.3 Plotting data

There will be times when we want to plot points of (x, y) pairs rather
than functions. We can use the plotPath function for this (also defined
in Graphics.Gnuplot.Simple).

10.4 Multiple curves on one set of axes

You can plot multiple curves on a single set of axes. This is particularly
useful if you want to compare two functions that have the same independent
and dependent variables. Consider the following plot.

10.4. MULTIPLE CURVES ON ONE SET OF AXES 99

plot2 = plotFuncs [] [0,0.1..10] [cos,sin]

Try to load this into GHCi.

Activity 10.1. Add one or more type signatures to this program so that it
correctly loads and makes a plot.

Notice that the plotFuncs function takes a list of functions as one of its
arguments. We found a use for a list of functions!

The range of x-values does not have to be the same for the two plots. Con-
sider the following example, which introduces the new function plotPaths.
Can you see how plotPaths differs from plotPath?

xs1, xs2 :: [R]

xs1 = [0,0.1..10]

xs2 = [-5,-4.9..5]

xys1, xys2 :: [(R,R)]

xys1 = [(x,cos x) | x <- xs1]

xys2 = [(x,sin x) | x <- xs2]

plot2 :: IO ()

plot2 = plotPaths [] [xys1,xys2]

You can plot three things at the same time if you like.

xRange :: [R]

xRange = [0,0.02..10]

f3 :: R -> R

f3 x = exp (-x)

plot3 :: IO ()

plot3 = plotFuncs [] xRange [cos,sin,f3]

100 CHAPTER 10. PRESENTATION PLOTTING

10.5 Controlling the plot ranges

By default, Gnuplot (the program that is making the graphs behind the
scenes) will make plots based on the x-ranges that you provide, and the
corresponding y-ranges that are calculated. Sometimes, you may want more
control over the x-range or the y-range.

Revisiting the previous example of three plots, try the following.

plot3’ :: IO ()

plot3’ = plotFuncs [XRange (-2,8)

, YRange (-0.2,1)

] xRange [cos,sin,f3]

Notice the funny stylistic way in which I made the list [XRange (-2,8),

YRange (-0.2,1)]. People who code in Haskell sometimes do this (putting
the comma first on the second line of the list), but you don’t have to. You
could put this all on one line, or put the comma at the end of the line. It’s
a matter of style.

Activity 10.2. Write a function

approxsin :: R -> R

approxsin = undefined

that approximates the sine function by the first four terms in its Taylor
expansion,

x− x3

3!
+
x5

5!
− x7

7!
.

(Depending on how you do this, you may or may not run into the issue that
you cannot divide a Double by an Int or an Integer in Haskell. You can
only divide a numeric type by the same numeric type. If you run into this
problem, you can use the function fromIntegral to convert an Int or an
Integer to some other type, like Double.)

Test your function by trying the following command in GHCi.

• plotFuncs [] [-4,-3.99..4] [sin,approxsin]

Make a nice version of this plot (with a title, axis labels, labels to indicate
which curve is which, etc.).

10.6. EXERCISES 101

10.6 Exercises

Exercise 10.1. Make a plot of y = x2 from x = −3 to x = 3 with a title
and axis labels.

Exercise 10.2. Take a look at the type signature for plotPath, and figure
out how to plot the list of points txPairs below.

ts :: [Double]

ts = [0,0.1..6]

txPairs :: [(Double,Double)]

txPairs = [(t,30 * t - 4.9 * t**2) | t <- ts]

Make a plot with a title and axis labels (with units).

102 CHAPTER 10. PRESENTATION PLOTTING

Chapter 11

Animation

The Haskell Prelude itself does not have any support for animation, but there
are good libraries available. For two-dimensional pictures and animations,
we will use the gloss library. For three-dimensional pictures and animations,
we will use a library named not-gloss .

11.1 2D Animation

The gloss library provides four main functions: display, animate, simulate,
and play. The first is for still pictures, the second and third are for pictures
which change with time, and the fourth is for pictures which change with
time and user input. We are interested primarily in the first three functions.

11.1.1 Displaying a picture

The function display produces a static picture. Let’s ask GHCi for the type
of display. Since display is not part of the Prelude, we must load the
module.

GHCi :m Graphics.Gloss

GHCi
:t display

 display :: Display -> Color -> Picture -> IO ()

The types Display, Color, and Picture are defined by the gloss library,
and IO () (pronounced “eye oh unit”) is the type given to a Haskell action,
which means the computer is going to do something (display a picture) rather

103

104 CHAPTER 11. ANIMATION

than return a value. IO is a type constructor, like Maybe, but it is a special
type constructor that is designed to signal an effect , which is a computation
that is not purely functional. An effect changes the world in some way. It
is more than a calculation. A file on the harddrive changing is an effect. A
picture being shown on the screen is an effect.

The types Display and Color are for display mode and background color,
respectively. The most interesting type is Picture, which represents the
type of things that can be displayed. The gloss documentation on Picture

describes the pictures that can be made (lines, circles, polygons, etc.).
GHCi is not so good at showing the pictures that gloss creates, so it

is better to make a stand-alone program. A minimal stand-alone program
(from the gloss documentation) is as follows.

{-# OPTIONS_GHC -Wall #-}

import Graphics.Gloss

main :: IO ()

main = display (InWindow "Nice Window" (200, 200) (10, 10))

white (Circle 80)

A stand-alone program must have a main function, which is the function
that will be evaluated when the program is run. Suppose we put this code in
a file named MinimalGloss.hs. To compile the stand-alone program, issue
the command

ghc --make MinimalGloss.hs

from the command line (not from inside GHCi). This should produce an
executable program named MinimalGloss which can be run.

Activity 11.1. Consult the gloss documentation on the Picture type and
make an interesting picture using the display function. Combine lines,
circles, text, colors, and whatever you like. Be creative.

11.1.2 Making an animation

Given a picture as a function of time, the function animate produces an
animation. The type of animate is the following.

11.2. 3D ANIMATION 105

animate :: Display -> Color -> (Float -> Picture) -> IO ()

The difference in type compared to display is that the Picture in display

has been replaced by a Float -> Picture in animate. The animate func-
tion uses a Float to describe time, so an expression of type Float -> Picture

is a function from time to pictures, or a picture as a function of time.

Activity 11.2. Use animate to make a simple animation. Be creative.

11.1.3 Making a simulation

The gloss function simulate allows the user to make an animation in which
an explicit function describing a picture as a function of time is not available.
The type of simulate is more complicated, and will be easier to describe after
we do a little physics. The simulate function is probably the most useful
for physics of all the gloss functions.

11.2 3D Animation

The not-gloss library provides four main functions whose names are identical
to those in gloss : display, animate, simulate, and play. As in gloss, the
first is for still pictures, the second and third are for pictures which change
with time, and the fourth is for pictures which change with time and user
input. We are interested primarily in the first three functions. The types
of these functions are different from the types of the corresponding gloss
functions. To use the not-gloss library, you must include

import Vis

at the top of you Haskell source file.

106 CHAPTER 11. ANIMATION

Part II

Newtonian Mechanics

107

Chapter 12

Newton’s Second Law

12.1 Newton’s First Law

Have you ever seen an air track? An air track is a fun toy (or piece of
experimental equipment if you’re feeling more serious) that consists of a long
horizontal rail (maybe 2 or 3 meters long) with little holes that allow air to
shoot upward out of the rail. A small car (maybe 5 cm wide and 10 cm long)
rides atop this air track. The purpose of the air is to eliminate most of the
friction that would exist between the car (which has no wheels) and the rail
as the car slides along the rail, so that the car can slide quite freely along the
air track. The cross section of the rail is shaped so that the car can only slide
back and forth along the length of the rail; the car cannot slide sideways and
it cannot move upward or downward in height.

If you give the car a little push on the air track and then let it go, you can
see that it travels at a constant speed until it hits the end of the track (nice
cars have springy bumpers that allow the car to make a gentle bounce at the
end of the track and slide in the opposite direction). After we stop pushing
the car, it continues to move at some speed even with no force applied in
the direction of motion. This tendency for moving objects to keep moving
is called inertia. In fact, this idea is important enough to be enshrined in
a principle of physics called Newton’s First Law . Here are two versions of
Newton’s First Law.

Newton’s First Law, poetic version
A body in motion stays in motion. A body at rest stays at rest.

109

110 CHAPTER 12. NEWTON’S SECOND LAW

Newton’s First Law, modern version
In the absence of applied forces, an object maintains the same
speed in the same direction.

Notice that Newton’s First Law makes no mention of forces that were
applied in the past. The point is that if there are no forces acting now, then
the speed will stay constant now. Any time there are no forces present, the
speed will stay constant.

Question 12.1. Suppose we have an air track, and a car with bumpers on
both ends, so that the car will bounce when it gets to either end of the
air track. We give the car a little push and then let it go. On a real air
track in the lab, the car may bounce at one end, then return to the other
end and bounce again, but there is a little bit of friction that the air can’t
completely eliminate, and the car will eventually slow down and stop. On
an ideal (perfect) air track that we construct in our minds, we suppose that
we can completely eliminate friction, and also that the bounces at the ends
allow the car to keep the same speed, only in the reverse direction. If we give
our car a little push on this ideal air track, how many times will it bounce
at each end of the track?

12.2 Newton’s Second Law

Newton’s First Law tells us what happens when no forces are present. Con-
versely, any time forces act on an object, the speed of the object may very
well change. Large forces can give rise to rapid changes in speed, while small
forces are likely to cause speed to change more slowly.

We can make the relationship between applied forces and change in speed
more precise. In order to do so, we need to develop some careful vocabulary.

First, we need to make a distinction between velocity and speed. Speed is
simply a number with units, such as 30 m/s. (The units m/s mean meters per
second.) Speed is never negative. Velocity includes more information than
speed. Velocity incorporates the direction of motion as well as the speed.
Suppose our air track is situated in our lab with one end toward the North
and the other end toward the South. We can choose a coordinate system in
which one of these directions is regarded as the positive direction and the
other is regarded as the negative direction. There are two coordinate systems
to choose from. We could choose North as the positive direction or we could

12.2. NEWTON’S SECOND LAW 111

choose South as the positive direction. Let us choose North as the positive
direction and South as the negative direction. A velocity of −20 m/s means
a speed of 20 m/s in the South direction. In this chapter and the next, we
consider the simplified case of motion in one dimension, such as along an
air track. For motion in one dimension, positive and negative numbers are
sufficient to describe velocity. For motion in two or three dimensions, which
we begin to consider in Chapter 14, we will need vectors to describe velocity.
For one-dimensional motion, we will use the symbol v for velocity.

Acceleration describes how velocity changes with time. Acceleration is
the key concept we need to be able to say how an object responds to the
application of forces. Let us consider a small interval of time over which
there may be forces acting on our car on the air track. Let t0 be the time at
the beginning of the time interval and v0 be the velocity of the car at time
t0. Let t1 be the time at the end of the time interval and v1 be the velocity
of the car at time t1. (If there were no forces acting during the time interval
from t0 to t1, then Newton’s First Law would tell us that the velocity stays
the same, that is v0 = v1.) The length of our time interval is

∆t = t1 − t0.

In the general case where forces are present, the velocity can change. The
change in velocity over the course of the time interval is

∆v = v1 − v0.

The average acceleration over the time interval ∆t is defined to be

a =
∆v

∆t
=
v1 − v0
t1 − t0

.

We use the symbol a for average acceleration.
We would very much like to be able to speak of the acceleration at a

particular point in time rather than the (average) acceleration over a time
interval. The purpose of calculus is to give us a language and a set of ideas
that allow us to define things like instantaneous acceleration, which is ac-
celeration at a point in time. Roughly speaking, we want to allow the time
interval ∆t to shrink toward zero as we “take the limit” by observing what
happens to the ratio ∆v/∆t as ∆t→ 0. In the notation of calculus, we write

a =
dv

dt
(12.1)

112 CHAPTER 12. NEWTON’S SECOND LAW

in which a is the instantaneous acceleration, and dv/dt is called the derivative
of velocity with respect to time. In words, we say any of the following.

• Acceleration is the derivative of velocity with respect to time.

• Acceleration is the rate of change of velocity with respect to time.

• Acceleration is the slope of the velocity-time graph.

Newton’s Second Law expresses a relationship between the following three
quantities.

• the forces that act on an object

• the mass of the object

• the acceleration of the object

Newton’s Second Law says that the acceleration of an object can be found
by dividing the net force acting on the object by the mass of the object. The
net force acting on an object is the sum of all of the forces acting on the
object. (In one dimension, some forces may be negative and some may be
positive.)

Newton’s Second Law in one dimension

a =
Fnet

m
(12.2)

{-# OPTIONS_GHC -Wall #-}

module Newton2 where

import Graphics.Gnuplot.Simple

type R = Double

Example 12.1. Suppose we have a car with mass 0.1 kg on an air track. The
car is initially moving to the North at a speed of 0.6 m/s. Starting at time
t = 0, we apply to this car a constant force of 0.04 N (N is an abbreviation for

12.2. NEWTON’S SECOND LAW 113

Newton, the unit of force) to the North. At the same time, our friend applies
to the same car a constant force of 0.08 N to the South. (By “constant”, we
mean that the force continues to exist with the same value for some period of
time.) What will the subsequent motion of the car look like? In particular,
how will the velocity of the car change in time?

We can use Newton’s Second Law to calculate the acceleration of the car
over the period of time during which the forces act. Taking North to be the
positive direction, we have F1 = 0.04 N and F2 = −0.08 N. Therefore,

Fnet = F1 + F2 = (0.04 N) + (−0.08 N) = −0.04 N.

a =
Fnet

m
=
−0.04 N

0.1 kg
= −0.4 m/s2

Because the forces are constant, the acceleration is also constant. Since
acceleration is the rate of change of velocity, an acceleration of −0.4 m/s2

means that the velocity changes by 0.4 m/s to the South every second. We
can write an equation for the subsequent velocity.

v(t) = 0.6 m/s− (0.4 m/s2)t (12.3)

We can make a graph of the velocity of the car as a function of time.

carGraph :: IO ()

carGraph = plotFunc [Title "Car on an air track"

,XLabel "Time (s)"

,YLabel "Velocity of Car (m/s)"

,PNG "CarVelocity.png"

,Key Nothing

] [0..4 :: R] (\t -> 0.6 - 0.4 * t)

114 CHAPTER 12. NEWTON’S SECOND LAW

Note that a negative acceleration (which we have over the entire time interval
from t = 0 to t = 4 s) does not necessarily mean that the car is slowing down.
Rather, a negative acceleration means an acceleration to the South. The car
slows down during the first 1.5 s as it is moving North, but then begins to
speed up as it moves South. When the acceleration and velocity of an object
point in the same direction, the object speeds up. When the acceleration
and velocity of an object point in opposite directions, the object slows down.

Example 12.1 showed a situation in which multiple forces acted on an
object, but all of the forces were constant in time. The forces did not change
over time, and so the acceleration was also constant. The acceleration did
not change over time. In a typical introductory physics course, you see a lot
of problems with constant acceleration, because these are the problems that
are readily solved without a computer. What kind of situation would fail to
have constant acceleration?

Example 12.2. Let’s consider a bicycle rider riding North on a flat level
road. We will consider two forces in this situation. First, there is the north-
ward force that the road exerts on the tires of the bicycle because the rider
is working the pedals. Second, there is the southward force of air resistance
that impedes the northward progress of the rider, especially when she is trav-
eling fast. The force of air resistance is a good example of a non-constant

12.2. NEWTON’S SECOND LAW 115

force. The air resistance depends on the speed of the bike through the air.
The force of air resistance is larger when the bicycle speed is larger. There
is no simple, universal law for the force of air resistance. It is a complicated
fluid dynamics problem in general (gases and liquids are fluids, so air is a
fluid). Let’s suppose in our problem a simple relationship between the bike
speed and the force of air resistance. The simplest relationship would be if
the force of air resistance were proportional to the bike speed. Twice the
speed would result in twice the force. We could write

Fair = Av

where A is a constant of proportionality that depends on the size and shape of
the bike, the temperature and humidity of the air, and maybe other factors.
We’re not going to get into any of these factors, we’re just going to say that
A is some constant. The constant A is related to what people sometimes
call a drag coefficient . Let us call the force produced by the rider Frider (it is
directly produced by the road on the bike, but it is indirectly produced by
the rider), and assume that this force is constant. Let’s take the mass of the
bike plus rider to be M = 70 kg. Newton’s second law tells us how to find
acceleration.

a =
Frider − Fair

M

We choose North to be the positive direction, so air resistance needs to come
in with a minus sign. Substituting our expression for air resistance, we have

a =
Frider − Av

M
.

Now this is an interesting situation. Acceleration tells velocity how to change.
If we know the acceleration, we know the rate at which velocity changes. But
in the present case, acceleration depends on velocity. We seem to have a sort
of chicken-and-egg problem. We need acceleration to find velocity and we
need velocity to find acceleration. The whole subject of differential equations
was invented to help with situations like this. We are not going to trot off
into the world of differential equations. It is true that differential equations
are secretly behind the methods that we will develop, but we will gently tap
their power and not shout about them too much right now.

116 CHAPTER 12. NEWTON’S SECOND LAW

12.3 State update

The key idea that will get us some traction out of the chicken-and-egg prob-
lem is to think of the velocity of the bike as part of the state of the bicycle at
any particular moment of time. For this situation, we are going to take the
state of the bicycle to consist of two items: time on the clock and velocity of
the bike.

We will further imagine that at the beginning of the situation (perhaps
when the rider starts riding) we know the initial state of the bike. Then what
Newton’s second law gives us is a state update rule. Newton’s second law
will tell us how to advance from

(t, v)→ (t′, v′)

or, better yet, from
(t, v)→ (t+ ∆t, v + ∆v).

The ∆t is a small time step that we will choose. We should pick it to be
“small” in the context of the situation. For a rider on a bicycle, ∆t = 1 s is
probably small enough. Interesting changes do not occur over a one second
interval when riding a bike. (If there was a crash, that would be an exception,
and we would want to use a smaller time step to analyze that, but notice
that a crash would also require at least one more force.)

Accleration tells velocity how to change, and Newton’s second law says
that acceleration is net force over mass, so our state update equations are

t′ = t+ ∆t

v′ = v +
Fnet

m
∆t. (12.4)

Applying state update equations like this is sometimes called the Euler
method for solving a differential equation. This state update procedure is
the main tool we will use to solve problems in Newtonian mechanics.

Example 12.3. For the rider on the bicycle, use the state update equations
with Frider = 100 N, A = 10 kg/s, M = 70 kg, and a time step ∆t = 1 s to
complete the following table.

t (s) v (m/s)
0 0.0000
1
2
3

12.3. STATE UPDATE 117

Solution: The state update equations are

t′ = t+ ∆t

v′ = v +
Frider − Av

M
∆t.

We put in the state variables in the first row of the table to obtain the
state variables in the second row of the table.

t′ = 0 + 1 = 1

v′ = 0.0000 +
100− 10 ∗ 0.0000

70
∗ 1 = 1.4286

We update the table.

t (s) v (m/s)
0 0.0000
1 1.4286
2
3

Now we update the state variables in the second row of the table to obtain
the state variables in the third row of the table.

t′ = 1 + 1 = 2

v′ = 1.4286 +
100− 10 ∗ 1.4286

70
∗ 1 = 2.6531

We update the table.

t (s) v (m/s)
0 0.0000
1 1.4286
2 2.6531
3

Now we update the state variables in the third row of the table to obtain the
state variables in the fourth row of the table.

t′ = 2 + 1 = 3

v′ = 2.6531 +
100− 10 ∗ 2.6531

70
∗ 1 = 3.7027

We can now complete the table.

118 CHAPTER 12. NEWTON’S SECOND LAW

t (s) v (m/s)
0 0.0000
1 1.4286
2 2.6531
3 3.7027

Let’s write some code for the bike situation.

bikeStateUpdate :: R -- time step

-> (R,R) -- starting state

-> (R,R) -- ending state

bikeStateUpdate dt (t,v) = (t + dt, v + dv)

where

dv = acceleration * dt

acceleration = (forceRider - forceAir) / mass

mass = 70

forceRider = 100

forceAir = drag * v

drag = 10

We now want to link up a whole chain of these state updates to get a
sense of what is happening over time.

bikeSolution :: R -- time step

-> (R,R) -- initial state

-> [(R,R)] -- infinite list of future states

bikeSolution dt = iterate (bikeStateUpdate dt)

There are other ways to write this definition. Here is a list of equivalent
definitions.

(a) bikeSolution dt = iterate (bikeStateUpdate dt)

(b) bikeSolution dt = iterate $ bikeStateUpdate dt

(c) bikeSolution dt = (iterate . bikeStateUpdate) dt

(d) bikeSolution = \dt -> iterate (bikeStateUpdate dt)

12.3. STATE UPDATE 119

(e) bikeSolution = \dt -> iterate $ bikeStateUpdate dt

(f) bikeSolution = \dt -> (iterate . bikeStateUpdate) dt

(g) bikeSolution = iterate . bikeStateUpdate

Definition (c) has the property that bikeSolution is being defined by acting
directly on dt with the function (iterate . bikeStateUpdate). When
this happens, the dt can be removed from both sides if you wish. Doing
this is called point-free style. It is just a stylist choice. Some people like
it and find it insightful. Others find it opaque. Feel free to use it if you
like it and avoid it if you don’t. You can see that items (d)–(f) are slight
modifications of items (a)–(c), respectively, in which an anonymous func-
tion is used on the right side instead of mentioning the argument on the left
side. Item (g), the point-free style, can be thought of as replacing the anony-
ous function \dt -> (iterate . bikeStateUpdate) dt with the function
iterate . bikeStateUpdate. This makes sense. It’s like saying the anony-
mous function \x -> sqrt x is the same as the function sqrt. It is.

Here is the function in point-free style.

bikeSolution’ :: R -- time step

-> (R,R) -- initial state

-> [(R,R)] -- infinite list of future states

bikeSolution’ = iterate . bikeStateUpdate

Let’s use these functions to check the work we did by hand above.

GHCi :l Newton2.lhs

GHCi
bikeSolution 1 (0,0) !! 3

 (3.0,3.702623906705539)

This time and velocity match the last row of our table very nicely.
We can make a graph of velocity as a function of time.

bikeGraph :: IO ()

bikeGraph = plotPath [Title "Bike velocity"

,XLabel "Time (s)"

,YLabel "Velocity of Bike (m/s)"

120 CHAPTER 12. NEWTON’S SECOND LAW

,PNG "BikeVelocity.png"

,Key Nothing

] (takeWhile (\(t,_) -> t <= 60)

(bikeSolution 1.0 (0,0)))

A phenomenon occurs here that does not occur in constant acceleration situ-
ations, and that is the establishment of a terminal velocity. After 30 seconds
or so, the forward force of the road (or the pedaling) matches the backward
force of the air. At this point we have no net force (or a very small net force)
and the velocity stays at the terminal velocity.

Activity 12.1. (Euler method by hand 1) To deepen our understanding of
the Euler method, we’ll do a calculation by hand (using only a calculator,
and not the computer).

Consider the differential equation

dv

dt
= −3v + 4 cos 2t

for the function v, along with the initial condition

v(0) = 2.

12.3. STATE UPDATE 121

Use the Euler method with a step size of ∆t = 0.1 to approximate the value
of v(0.3).

Keep at least four figures after the decimal point in your calculations.
Show your calculations in a small table.

Let (t, v) be a pair of values representing the independent (t) and depen-
dent (v) variables at a moment in time. Let us call this pair a state tuple,
because it encapsulates the state of the system at a moment in time. A
helpful way of thinking about a single step of the Euler method is that it
takes a state tuple (t, v) as input and gives as output a new state tuple (t′, v′)
representing the variables at a later point in time (the step size ∆t later in
time).

(t, v)→ (t′, v′)

The Euler method prescribes that the new values are related to the old values
by

t′ = t+ ∆t

v′ = v + a(t, v)∆t

where a(t, v) is the acceleration as a function of t and v.

Activity 12.2. (Euler method by computer 1) Write a Haskell function

eulerStepExample :: (R,R) -> (R,R)

eulerStepExample = undefined

that takes a pair (t, v) and returns a pair (t′, v′) for a single step of the
Euler method for the differential equation

dv

dt
= −3v + 4 cos 2t

with a step size of ∆t = 0.1.

Show how to use the function eulerStep1 to calculate the value v(0.3)
that you calculated by hand before.

122 CHAPTER 12. NEWTON’S SECOND LAW

eulerStep1 :: R

-> ((R,R) -> R)

-> (R,R) -> (R,R)

eulerStep1 dt a (t,v) = (t’,v’)

where

t’ = t + dt

v’ = v + a(t,v) * dt

Activity 12.3. Consider the differential equation

dv

dt
= −v

subject to the initial condition v(0) = 8. Solve this initial value problem over
the time interval 0 ≤ t ≤ 10 using the Euler method. (You will probably want
to use the Prelude function iterate.) Plot v as a function of t to see what
it looks like. Compare your results to the exact solution of the differential
equation (You can solve this differential equation exactly by guessing or some
other method.) Try out different time steps to see what happens when the
time step gets too big.

Find a time step that is small enough so that the Euler solution and the
exact solution overlap precisely on a plot. Find another time step that is big
enough so that you can see the difference between the Euler solution and the
exact solution on a plot.

Make a nice plot (with title, axis labels, etc.) with these three solutions
on a single graph (bad Euler, good Euler, and exact). Label the Euler results
with the time step you used, and label the exact result “Exact”. Put your
name on the plot (using the label commands we learned).

Activity 12.4. Consider the differential equation

dv

dt
= cos(t+ v)

subject to the initial condition v(0) = 0. You cannot solve this differential
equation by hand. (Why not?) Use the Euler method with a step size of
∆t = 0.01 to find v(t) over the interval 0 ≤ t ≤ 3. Make a nice plot of the
resulting function, and include on your plot (using a label command) the
value v(3) to five significant figures. Put your name on the plot (using a
label command).

Chapter 13

Mechanics in One Dimension

Mechanics is easiest in one spatial dimension, because quantities like position,
velocity, acceleration, force, and momentum can be represented by numbers
rather than by vectors.

13.1 State update

In Chapter 12, we introduced the idea that Newton’s second law is a state
update rule. We used a time-velocity pair (t, v) to characterize the state of
an object such as a car or a bicycle that can move in one dimension. We
used Newton’s second law to answer the question of how to update the state

(t, v)→ (t′, v′)?

The new time t′ is the old time t plus a change in time. The new velocity v′

is the old velocity v plus a change in velocity.

t′ = t+ ∆t

v′ = v + ∆v

If ∆t is small compared with the important time scales in the problem,
then ∆v/∆t approximates the instantaneous acceleration the object experi-
ences, which by Newton’s second law is the net force on the object divided
by its mass.

∆v

∆t
=
Fnet

m

123

124 CHAPTER 13. MECHANICS IN ONE DIMENSION

Newton’s second law provides a way to approximate ∆v for an object if we
know all the forces that act on the object.

∆v =
Fnet

m
∆t

Here, then, are our state update equations.

t′ = t+ ∆t

v′ = v +
Fnet

m
∆t (13.1)

We assume that we know the current state (t, v) of the object of interest.
We assume that we know the mass m of the object, and that it is constant.
We also assume that from (t, v) we can get numbers for all of the forces
that act on the object. If these assumptions all hold, then the state update
equations will give us a new state (t′, v′) consisting of a new time t′ (just a
little later than the old time) and a new velocity v′. (Remember velocity
remains constant under conditions of no net force, but changes when a net
force is present.)

One of the assumptions we just mentioned is too hopeful and usually not
true. It is the assumption that if we know t and v, we can get numbers for
all of the forces that act on an object. That assumption held for all of the
examples in Chapter 12, but it leaves out the possibility that a force may
depend on the position (location) of an object. If an object is attached to a
spring, for example, the force that the spring applies to the object depends
on how far the spring is extended or compressed. The spring force depends
on where the object is. Another force that depends on location is Newton’s
universal gravity, which is inversely proportional to the square of the distance
from the object to another object. Again we need to know where the object
is to compute the force that acts on it.

The fact that we cannot compute all of the forces that we are interested
in from a state consisting of a time-velocity pair (t, v) means that the time-
velocity pair is in general too impoverished to serve as the state of an object.
Knowing that we are interested in forces that depend on the position of our
object, we expand our state to be a time-position-velocity triple (t, x, v). This
triple will serve as the state of an object for this chapter.

With a hopeful new state in hand, we return to the question of state
update. How can we advance the state

(t, x, v)→ (t′, x′, v′)?

13.1. STATE UPDATE 125

The good news is that we can keep our state update equations (13.1), with
the new understanding that the forces may depend on any of t, x, and/or v.
We need an update equation for x′. The definition of velocity helps us here.
If ∆t is small compared with the time scales in the problem, then ∆x/∆t is
a good approximation to the instantaneous velocity of our object. In other
words, ∆x = v∆t. Here are our new state update equations.

t′ = t+ ∆t

x′ = x+ v∆t

v′ = v +
Fnet

m
∆t

Example 13.1. (State update by hand.)
Consider a damped, driven harmonic oscillator. This is a mass m on the

end of a spring that can oscillate horizontally on the surface of a table. There
are three forces that act on the mass. The spring force is produced by the
spring and acts to restore the mass to an equilibrium position. The spring
force is given by Hooke’s law

Fspring = −kx

which claims that the force produced by the spring is proportional to the
displacement of the mass from its equilibrium position. The constant k is
the spring constant . A spring with a large spring constant is a stiff spring
that takes lots of force to extend or compress. The negative sign makes the
spring force a restoring force. The equilibrium position is x = 0. If x is
positive, then Fspring is negative, and the force acts toward the equilibrium
position. If x is negative, then Fspring is positive, and again the force acts
toward the equilibrium position. A second force is a damping force

Fdamp = −bv

which is a frictional force proportional to velocity. It could be caused by air
resistance. The damping constant b gives a sense of the size of this frictional
force. The third force is the driving force

Fdrive = F0 cosω0t

which is an oscillating force, applied with amplitude F0 and angular frequency
ω0.

126 CHAPTER 13. MECHANICS IN ONE DIMENSION

By including all three of these forces, we have a net force that depends
on all three of our state variables (t, x, v).

Use the state update equations with F0 = 40 N, ω0 = 6 rad/s, k =
500 N/m, b = 20 kg/s, m = 5 kg, and a time step ∆t = 0.1 s to complete
the following table.

t (s) x (m) v (m/s)
0.0 0.1000 0.0000
0.1
0.2
0.3

Solution: The state update equations are

t′ = t+ ∆t

x′ = x+ v∆t

v′ = v +
F0 cosω0t− kx− bv

m
∆t

We put in the state variables in the first row of the table to obtain the
state variables in the second row of the table.

t′ = 0.0 + 0.1 = 0.1

x′ = 0.1000 + 0.0000 ∗ 0.1 = 0.1000

v′ = 0.0000 +
40 cos(6 ∗ 0.0)− 500 ∗ 0.1000− 20 ∗ 0.0000

5
∗ 0.1 = −0.2000

We update the table.

t (s) x (m) v (m/s)
0.0 0.1000 0.0000
0.1 0.1000 -0.2000
0.2
0.3

Now we put in the state variables in the second row of the table to obtain
the state variables in the third row of the table.

t′ = 0.1 + 0.1 = 0.2

x′ = 0.1000− 0.2000 ∗ 0.1 = 0.0800

v′ = −0.2000 +
40 cos(6 ∗ 0.1)− 500 ∗ 0.1000 + 20 ∗ 0.2000

5
∗ 0.1 = −0.4597

We update the table.

13.1. STATE UPDATE 127

t (s) x (m) v (m/s)
0.0 0.1000 0.0000
0.1 0.1000 -0.2000
0.2 0.0800 -0.4597
0.3

Now we put in the state variables in the third row of the table to obtain the
state variables in the fourth row of the table.

t′ = 0.2 + 0.1 = 0.3

x′ = 0.0800− 0.4597 ∗ 0.1 = 0.0340

v′ = −0.4597 +
40 cos(6 ∗ 0.2)− 500 ∗ 0.0800 + 20 ∗ 0.4597

5
∗ 0.1 = −0.7859

We can now complete the table.

t (s) x (m) v (m/s)
0.0 0.1000 0.0000
0.1 0.1000 -0.2000
0.2 0.0800 -0.4597
0.3 0.0340 -0.7859

You can see that we are finding out how the position and the velocity of
the object are changing in time. By letting the computer do this work, we
can get accurate results over long periods of time.

Let’s write some code so that the computer can automate the state update
for us. I always like to start by turning on warnings.

{-# OPTIONS_GHC -Wall #-}

Let’s make the code in this chapter into a module and give it the name
Mechanics1D.

module Mechanics1D where

We will want to make a plot later, so let’s import that module

128 CHAPTER 13. MECHANICS IN ONE DIMENSION

import Graphics.Gnuplot.Simple

Let’s use the type synonym R instead of Double. It’s shorter and it
reminds us of the real numbers.

type R = Double

Now there are some other type synonyms I’d like to introduce.

type Time = R

type TimeStep = R

type Position1D = R

type Velocity1D = R

type Acceleration1D = R

Here we are saying that time, a time step, position, velocity, and acceler-
ation in one dimension are all represented by a real number. The next type
synonym defines our state as a time-position-velocity triple.

type StateTuple1D = (Time,Position1D,Velocity1D)

Our final type synonym is more complicated. It defines something called
an acceleration function, which is the function of t, x, and v that gives the
acceleration through Newton’s second law

a(t, x, v) =
Fnet(t, x, v)

m

where we recall that the net force can depend on t, x, and v. Since accelera-
tion depends on the state tuple, and produces an acceleration, it is a function
with the following type.

type AccelerationFunction1D = StateTuple1D -> Acceleration1D

The next function is probably the most important function in this chapter.
It is the state update rule for one-dimensional mechanics. This state update
rule can work with any forces that depend only on t, x, and v (which is
almost all forces).

13.1. STATE UPDATE 129

eulerStep1D :: TimeStep

-> AccelerationFunction1D

-> StateTuple1D -> StateTuple1D

eulerStep1D dt a (t,x,v) = (t’,x’,v’)

where

t’ = t + dt

x’ = x + v * dt

v’ = v + a(t,x,v) * dt

Finally, to build a “table” of values like we did by hand in the damped,
driven harmonic oscillator example, we have a function to iterate the state
update.

eulerSolution1D :: TimeStep

-> AccelerationFunction1D

-> StateTuple1D -> [StateTuple1D]

eulerSolution1D dt a (t,x,v)

= iterate (eulerStep1D dt a) (t,x,v)

This completes our general technology for dealing with one-dimensional
mechanics. Let’s now apply this technology to the damped, driven harmonic
oscillator that we looked at by hand.

Once we know all of the forces that act on our object, we can write an
acceleration function.

accelFuncDampedDrivenHarm :: AccelerationFunction1D

accelFuncDampedDrivenHarm (t,x,v)

= (fDrive + fSpring + fDamp) / m

where

fDrive = f0 * cos (omega0 * t)

fSpring = -k * x

fDamp = -b * v

m = 5

f0 = 40

omega0 = 6

k = 500

b = 20

130 CHAPTER 13. MECHANICS IN ONE DIMENSION

This function contains most of the physics of the particular situation
we are considering. The following functions help calculate things that we
calculated by hand above, so we can check that things are working as we
expect.

ddHarmTuples :: [StateTuple1D]

ddHarmTuples = eulerSolution1D 0.1 accelFuncDampedDrivenHarm (0.0,0.1,0.0)

ddHarmTupleAtp3 :: StateTuple1D

ddHarmTupleAtp3 = ddHarmTuples !! 3

timeFromTuple :: StateTuple1D -> Time

timeFromTuple (t,_,_) = t

posFromTuple :: StateTuple1D -> Time

posFromTuple (_,x,_) = x

velFromTuple :: StateTuple1D -> Time

velFromTuple (_,_,v) = v

GHCi :l Mechanics1D.lhs

GHCi
posFromTuple ddHarmTupleAtp3

 3.402684919277425e-2

GHCi
velFromTuple ddHarmTupleAtp3

 -0.7859527012620158

Before we leave the damped, driven harmonic oscillator, let’s make a
graph of its position as a function of time. I’m going to trim the time step
to ∆t = 0.01 s to get more accurate results.

ddHarmTuples’ :: [StateTuple1D]

ddHarmTuples’ = eulerSolution1D 0.01 accelFuncDampedDrivenHarm (0.0,0.1,0.0)

posTimePlot :: IO ()

posTimePlot

= plotPath [Title "Damped, Driven Harmonic Oscillator"

13.2. UNITS 131

,XLabel "Time (s)"

,YLabel "Position (m)"

,PNG "ddharm.png"

,Key Nothing

] [(t,x) | (t,x,_) <- take 500 ddHarmTuples’]

Here is the plot we made.

13.2 Units

Another issue that we must consider is the choice of units. All of our phys-
ical quantities have units associated with them, but we are only asking the
computer to keep track of numbers, and not units. In many problems, we
can use the standard SI units (kilograms, meters, seconds, etc.) and in such
a case we just remember that the numbers that are coming out of our calcu-
lations are in the standard SI units. But, suppose you are doing a calculation
of the Earth’s position as it revolves about the Sun. Meters might not be
the best units to use, because you would always be dealing with numbers
in the billions. For a problem like this, it makes sense to choose a bigger

132 CHAPTER 13. MECHANICS IN ONE DIMENSION

unit of length (maybe the astronomical unit AU), so that you can work with
numbers that are within a few orders of magnitude of 1.

The same issues are true for microscopic problems in physics. If you are
interested in the energy of an atom, it makes little sense to choose Joules
as your unit of energy, because then you are always looking at tiny tiny
numbers. Maybe electron volts (eV) or milli-electron volts (meV) would be
better.

13.3 Air resistance

13.3.1 Introduction

When studying topics like projectile motion in an introductory physics class,
we usually ignore air resistance.

Air resistance is the force an object feels as it moves through the air. It
comes from the molecules of air slamming into the object.

In fact, air resistance is just one example of the larger subject of fluid
flow. Air is a fluid (fluids are liquids and gases) that flows around an object.
Fluids like air can exert forces on objects.

The study of fluid flow around solid objects is very complex. If a person
wanted to design a good wing cross-section for an airplane, she would need
to have a good understanding of this subject. Our aims are more modest.
We don’t really care what happens to the air as it flows around an object.
We just want a decent model for the force that the air exerts on an object.

There is one thing that we can say right away. The direction of the force
of air resistance on an object is opposite the motion of the object (in other
words, opposite the velocity of the object).

13.3.2 Collision model

Let us think of the interaction between an object and the air around it as
a collision. Suppose the object is moving with velocity v. Let the cross-
sectional area of the object be A. Let the density of air be ρ.

We assume that the initial velocity of the air is zero, and that the final
velocity of the air is v (in other words, after the collision, the air is traveling
at the same speed as the object).

13.4. EULER-CROMER METHOD 133

The distance the object travels in time dt is vdt. The volume of air swept
out by the object in time dt is Avdt. The mass of air disturbed by the object
in time dt is

ρAvdt.

The momentum imparted to the air by the object in time dt is

ρAv2dt.

The force felt by the object from the air is

Fair = −ρAv2.

Our derivation was really quite approximate, since we don’t know that the
air molecules really end up with velocity v, and we haven’t even tried to take
into account the forces of air molecules on each other as the air compresses.
Nevertheless, the form of our result is quite useful and approximately correct.
Objects with different shapes respond a bit differently, however, and so it is
useful to introduce a drag coefficient C to account for these differences. The
drag coefficient is a dimensionless constant that is a property of the object
that is trying to fly through the air. Our final expression for the magnitude
of air resistance is

Fair = −CρAv2.

13.4 Euler-Cromer method

For second-order differential equations (such as Newton’s second law), there
is a slight modification that we can make to the Euler method which improves
the results in a number of cases. Recall that we wish to solve the differential
equation

d2x

dt2
=

1

m
Fnet

(
x,
dx

dt
, t

)
. (13.2)

By introducing v = dx/dt, this second-order differential equation is equiva-
lent to the two first-order differential equations

dv

dt
=

1

m
Fnet(x, v, t) (13.3)

dx

dt
= v. (13.4)

134 CHAPTER 13. MECHANICS IN ONE DIMENSION

The Euler method prescribes that we find the values of x and v at a later
time t+ ∆t from their values at the earlier time t in the following way.

v(t+ ∆t) = v(t) +
1

m
Fnet(x(t), v(t), t)∆t

x(t+ ∆t) = x(t) + v(t)∆t

The Euler-Cromer method seeks a solution to the same differential equa-
tion(s), and the prescription is only slightly different.

v(t+ ∆t) = v(t) +
1

m
Fnet(x(t), v(t), t)∆t (13.5)

x(t+ ∆t) = x(t) + v(t+ ∆t)∆t (13.6)

13.5 Exercises

Exercise 13.1. (Euler method by hand 2) Consider the differential equation

d2x

dt2
= −3x+ 4 cos 2t− 2

dx

dt

for the function x(t), along with the initial conditions

x(0) = 2

and
dx

dt
(0) = 1.

Use the Euler method with a step size of ∆t = 0.1 to approximate the value
of x(0.3).

Keep at least four figures after the decimal point in your calculations.
Show your calculations in a small table. (The table will have three columns
now, for t, x, and dx/dt.)

Exercise 13.2. (Euler method by computer 2) Write a Haskell function

eulerStep2 :: (Double,Double,Double) -> (Double,Double,Double)

eulerStep2 = undefined

13.5. EXERCISES 135

that takes a pair (t, x, v) and returns a pair (t′, x′, v′) for a single step of
the Euler method for the differential equation

d2x

dt2
= −3x+ 4 cos 2t− 2

dx

dt

with a step size of ∆t = 0.1, and initial conditions as above.

Show how to use the function eulerStep2 to calculate the value x(0.3)
that you calculated by hand before.

Exercise 13.3. Let’s warm up with a basic projectile motion problem where
we know what the answer should look like. Suppose a ball is thrown from the
ground straight up into the air with an initial velocity of 10 m/s. Ignoring air
resistance, use the Euler method to find the height of the ball as a function
of time. Make a plot of height as a function of time.

Exercise 13.4. Consider a 3-kg mass connected by a linear spring with
spring constant 100,000 N/m to a wall. If the spring is extended by 0.01 m
and released, what does the subsequent motion look like? Investigate this
motion over several cycles of oscillation. Compare your results to the exact
solution. Find a time step that is small enough so that the Euler solution and
the exact solution overlap precisely on a plot. Find another time step that
is big enough so that you can see the difference between the Euler solution
and the exact solution on a plot.

Make a nice plot (with title, axis labels, etc.) with these three solutions
on a single graph (bad Euler, good Euler, and exact). Label the Euler results
with the time step you used, and label the exact result “Exact”. Put your
name on the plot (using the label commands we learned).

Exercise 13.5. Let’s investigate dropping things from large heights. In
particular, let’s look at a ping-pong ball and a bowling ball. In each case,
take C = 1/2. You will need to find out good approximations for things like
the size and mass of these balls. Let’s drop them from 100 m and 500 m.
Make graphs of velocity as a function of time and velocity as a function of
vertical position. What fraction of terminal velocity is achieved in each case?
Assemble your results in some meaningful and understandable way.

Exercise 13.6. In the Euler method, we update the state tuple (t, x, v) →

136 CHAPTER 13. MECHANICS IN ONE DIMENSION

(t′, x′, v′) by

t′ = t+ ∆t

x′ = x+ v∆t

v′ = v +
1

m
Fnet(x, v, t)∆t

Write similar update equations for the Euler-Cromer method.

Exercise 13.7. Return to the harmonic oscillator problem that we did ear-
lier. Compare the Euler and Euler-Cromer solutions to the exact solution
for a time step of 0.001 s (you will recall that this is not a very good time
step for the Euler method). Plot the displacement of the mass as a function
of time for the first 0.1 s of motion. Plot Euler, Euler-Cromer, and exact
solutions on one set of axes. Also give the value of the position of the mass
(to four significant figures) at t = 0.1 s for each of the three solutions.

Chapter 14

Mechanics in Three Dimensions

To do mechanics in three dimensions, we must use vectors rather than num-
bers for displacement, velocity, acceleration, and force.

14.1 Vectors in Haskell

Haskell does not come with a built-in type for vectors, so we have to define
them ourselves. I have done this in the module SimpleVec in Appendix B.
The module defines a new Vec type for vectors, along with a number of func-
tions to work with vectors. Alternatively, the Vec type and related functions
are also available in the Physics.Learn.SimpleVec module from the learn-
physics package at http://hackage.haskell.org/. To use the module, we
first import it.

GHCi :m Physics.Learn.SimpleVec

You can make a vector with the vec function by giving its three compo-
nents.

GHCi
vec 3.2 0 (-6.4)

 vec 3.2 0.0 (-6.4)

What can we do with Vecs? We can add them to other Vecs and we can
scale them with Doubles. To add Vecs, we will not use the + operator that
we use with numbers, but rather a new vector addition operator named ^+^.

GHCi
vec 1 2 3 ^+^ vec 4 5 6

 vec 5.0 7.0 9.0

137

138 CHAPTER 14. MECHANICS IN THREE DIMENSIONS

You can think of the carrot on each side of the plus as a reminder that
there is a vector on the left and a vector on the right. To scale a vector, we
can use the *^ operator.

GHCi
5 *^ vec 1 2 3

 vec 5.0 10.0 15.0

Notice that the carrot goes on the right of the asterisk, because the vector
is on the right. You can multiply a Vec by a Double on the right with the
^* operator.

GHCi
vec 1 2 3 ^* 5

 vec 5.0 10.0 15.0

Since the vector is on the left, the carrot is on the left. We can divide by
a Double with the ^/ operator.

GHCi
vec 1 2 3 ^/ 5

 vec 0.2 0.4 0.6

You can subtract Vecs with the ^-^ operator.

GHCi
vec 1 2 3 ^-^ vec 4 5 6

 vec (-3.0) (-3.0) (-3.0)

You can take the dot product of two Vecs with the <.> operator.

GHCi
vec 1 2 3 <.> vec 4 5 6

 32.0

You can take the cross product of two Vecs with the >< operator (it’s
supposed to look like a cross product).

GHCi
vec 1 2 3 >< vec 4 5 6

 vec (-3.0) 6.0 (-3.0)

You can take the magnitude of a vector.

GHCi
magnitude $ vec 3 4 12

 13.0

If you need the components of a vector, you can get them with the xComp

function.

GHCi
xComp $ vec 1 2 3 >< vec 4 5 6

 -3.0

There are also functions yComp and zComp. The zero vector is called
zeroV.

14.2. EULER METHOD WITH VECTORS 139

Function Type
zeroV :: Vec

iHat :: Vec

(^+^) :: Vec -> Vec -> Vec

(^-^) :: Vec -> Vec -> Vec

(*^) :: Double -> Vec -> Vec

(^*) :: Vec -> Double -> Vec

(^/) :: Vec -> Double -> Vec

(<.>) :: Vec -> Vec -> Double

(><) :: Vec -> Vec -> Vec

negateV :: Vec -> Vec

magnitude :: Vec -> Double

xComp :: Vec -> Double

vec :: Double -> Double -> Double -> Vec

sumV :: [Vec] -> Vec

Table 14.1: Functions for working with vectors.

GHCi
zeroV

 vec 0.0 0.0 0.0

You can negate a vector with negateV.

GHCi
negateV $ vec 1 2 3 >< vec 4 5 6

 vec 3.0 (-6.0) 3.0

The unit vectors iHat, jHat, and kHat are defined.

GHCi
jHat

 vec 0.0 1.0 0.0

Strictly speaking, zeroV and iHat are not functions. Is there a better
word?

14.2 Euler method with vectors

Now that we have a vector type Vec, we need versions of our Euler method
and Euler-Cromer method functions that work with vectors.

140 CHAPTER 14. MECHANICS IN THREE DIMENSIONS

{-# OPTIONS_GHC -Wall #-}

import Physics.Learn.SimpleVec

import Graphics.Gloss

import Graphics.Gloss.Interface.Pure.Simulate

The very first line of code above turns on warnings, which is something
I like to do because it encourages good programming habits. Later in this
chapter we’ll be using the Gloss animation library, so in addition to importing
Physics.Learn.SimpleVec, we also import two Gloss modules.

For any code in which we want to use the Vec type and the associated
operations, we must include

import Physics.Learn.SimpleVec

at the top of the file.
Suppose we define the following type synonyms.

type Time = Double

type TimeStep = Double

type Mass = Double

type Position = Vec

type Velocity = Vec

type Acceleration = Vec

type Force = Vec

type StateTuple = (Time,Position,Velocity)

type AccelerationFunction = StateTuple -> Acceleration

eulerStep :: TimeStep

-> AccelerationFunction

-> StateTuple -> StateTuple

eulerStep dt a (t,r,v) = (t + dt, r ^+^ dr, v ^+^ dv)

where

14.2. EULER METHOD WITH VECTORS 141

dr = v ^* dt

dv = a(t,r,v) ^* dt

eulerCromerStep :: TimeStep

-> AccelerationFunction

-> StateTuple -> StateTuple

eulerCromerStep dt a (t,r,v) = (t’,r’,v’)

where

t’ = t + dt

r’ = r ^+^ v’ ^* dt

v’ = v ^+^ a(t,r,v) ^* dt

We are now in a wonderful position. All we need to do to solve any
one-body problem in mechanics is give the computer

• a time step,

• the body’s acceleration as a function of its current state,

• and the body’s initial state.

Of course, to find the acceleration of the body, we will generally need to add
up the forces that act on the body to get the net force, and divide by the
body’s mass. The computer will then calculate the position and velocity of
the particle at later points in time, for as long as we like.

Let’s make our technology even easier to use. Our function eulerCromerStep

advances the scene by one time step, and we need to use the iterate function
to move forward in time by many time steps. The function eulerCromerSolution

returns an infinite list of StateTuples, which can then be further processed
for plotting or other purposes.

eulerCromerSolution :: TimeStep

-> AccelerationFunction

-> StateTuple -> [StateTuple]

eulerCromerSolution dt a = iterate $ eulerCromerStep dt a

Since Haskell is a lazy language, it will not actually calculate the entire infi-
nite list (an impossible task in any case). It will only calculate the minimum
amount of the list necessary to do what you ask of it.

142 CHAPTER 14. MECHANICS IN THREE DIMENSIONS

Below is an example of how we might use our new Euler-Cromer vector
technology for a simple projectile motion problem.

trajectory :: [StateTuple] -> [(Double,Double)]

trajectory tups = [(xComp r,yComp r) | (_,r,_) <- tups]

-- vertical direction is y direction

earthSurfaceGravity :: AccelerationFunction

earthSurfaceGravity _state = vec 0 (-g) 0

g :: Double

g = 9.81

projectileTuples :: Double -> Double -> [StateTuple]

projectileTuples v0 theta

= eulerCromerSolution 0.01 earthSurfaceGravity

(0,vec 0 0 0,vec vx0 vy0 0)

where

vx0 = v0 * cos theta

vy0 = v0 * sin theta

plotTuples :: [StateTuple]

plotTuples = takeWhile (\(_,r,_) -> yComp r >= 0)

$ projectileTuples 30 (pi/3)

plot1 :: IO ()

plot1 = plotPath [] $ trajectory plotTuples

Activity 14.1. Let us treat the Earth as being fixed at the origin of our
coordinate system. Consider the gravitational force on a satellite of mass m,
initial position r0, and initial velocity v0. Since the motion of the satellite
will take place in a plane, we can use vectors that lie in the xy plane. Plot
trajectories of orbits resulting from various initial conditions. Choose some
values for initial conditions that give nearly circular orbits and some others
that give elliptical orbits. You will find that the Euler method produces
orbits that don’t close on themselves. Hand in one plot comparing the Euler
and Euler-Cromer methods for one orbit that you like (elliptical or circular).
Indicate the step size that you used for the Euler and Euler-Cromer methods,
as well as your choice of initial conditions.

14.3. ANIMATION 143

Activity 14.2. The Lorentz force law describes the force exerted on a par-
ticle with charge q and velocity v by an electric field E and a magnetic field
B. The Lorentz force law is

F = q(E + v ×B).

Consider a uniform magnetic field in the z-direction. You may already know
that a charged particle with initial velocity in the x-direction will go in circles
in this magnetic field. Choose some values for the strength of the magnetic
field, the charge of the particle, the mass of the particle, and the initial
velocity. Confirm, using the Euler method, that the particle does indeed go
in circles. Plot y vs. x for different time steps.

14.3 Animation

In section 11.1.2, we discussed the Gloss library’s animate function. The
key ingredient there was a function Float -> Picture that describes how
a picture (the Picture) changes with time (the Float). The trouble with
using the animate function to display the results of our calculations is that
we don’t have an explicit solution as a function of time, so we can’t make a
picture as a function of time.

Fortunately, the Gloss library provides another function, simulate, which
works very nicely with numerical methods for solving differential equations
(such as the Euler method), where we don’t have a solution in advance.

The type of simulate is the following.

simulate :: Display -- ^ Display mode.

-> Color -- ^ Background color.

-> Int -- ^ Number of simulation steps to take

-- for each second of real time.

-> model -- ^ The initial model.

-> (model -> Picture)

-- ^ A function to convert

-- the model to a picture.

-> (ViewPort -> Float -> model -> model)

-- ^ A function to step the model one

-- iteration. It is passed the

144 CHAPTER 14. MECHANICS IN THREE DIMENSIONS

-- current viewport and the amount

-- of time for this simulation

-- step (in seconds).

-> IO ()

The types Display, Color, and Picture are the same as for the display

function we discussed in section 11.1.1.
The third argument to simulate, with type Int, is the number of simu-

lation steps to take for each second of real time. I recommend starting with
something in the range of 10–100. This “real time” is really animation time
(time in the displayed simulation), which could be different from time in the
physical situation you are working with. For example, if your physical situa-
tion is a satellite orbiting earth, it could take hours, days, or months for the
satellite to make a revolution. In the animation, you may want to see a full
revolution take place in 10 seconds. If you set the number of simulation steps
per second to 20, you are asking for about 200 time steps per revolution if
the revolution is displayed in 10 seconds.

The fourth argument to simulate has the type variable model. You can
choose model to be any type you like. The type you choose should contain
the full state of affairs necessary to describe your physical situation. For a
single particle in three dimensions, a good choice for model is StateTuple.
The fourth argument is an initial value of this model. This is the same
information we need to give to the Euler or Euler-Cromer method.

The fifth argument to simulate, with type model -> Picture, is the
heart of the animation. Here you need to write a function that describes
what the Picture should look like for a given value of type model. (Perhaps
“state” would have been a better type variable than “model”.) If you are
using StateTuple as your model, the function needs to describe how you will
use the time, position, and velocity contained in the StateTuple to construct
a picture. You do not need to use all three. Perhaps you wish only to display
information about the position. It’s up to you.

The sixth argument to simulate, with type

ViewPort -> Float -> model -> model,

describes how the system evolves in time. This is closely related to our
eulerCromerStep function, and should probably be based on it. Do not
worry about the ViewPort type. You can give a dummy variable for ViewPort

14.3. ANIMATION 145

and not use it in your function (the underscore _ is Haskell’s conventional
name for a dummy argument that you have no intention of using. The Float
is a time step. Note that eulerCromerStep also takes a time step as one
of its arguments. If you need to scale the time (from a day of time in your
physical situation to a second of time in animation, for example), this a good
place to do it. The Float input to this function is a time step in seconds of
animation time. You may want to scale this time before passing it as a time
step to eulerCromerStep.

Example 14.1. Here is a full working example of Gloss’s simulate function
being used to animate projectile motion.

{-# OPTIONS_GHC -Wall #-}

-- Use Gloss’s simulate function to animate projectile motion

-- using the Euler-Cromer method

-- positive x is to the right in Translate

-- positive y is up in Translate (this is good)

-- This function defines a disk

-- in terms of Gloss’s ThickCircle

disk :: Float -> Picture

disk radius = ThickCircle (radius/2) radius

-- A red disk will represent the projectile

redDisk :: Picture

redDisk = Color red (disk 50)

-- projectile mass

projectileMass :: Double

projectileMass = 1

-- initial time

t0 :: Double

t0 = 0

-- initial position

146 CHAPTER 14. MECHANICS IN THREE DIMENSIONS

r0 :: Vec

r0 = vec 0 0 0

-- given a speed and angle, produce a velocity vector

velFromSpeedAngle :: Double -> Double -> Vec

velFromSpeedAngle v theta

= vec (v * cos theta) (v * sin theta) 0

-- initial velocity

v0 :: Vec

v0 = velFromSpeedAngle 100 (35 * pi / 180)

-- Gloss’s idea of "model" is the same as our idea of state,

-- that is, the information required to express the current

-- "state of affairs" of our system.

-- The initial model is the initial StateTuple.

modelInitial :: StateTuple

modelInitial = (t0,r0,v0)

-- This function tells what the picture should look like

-- for a given state of affairs.

modelToPicture :: StateTuple -> Picture

modelToPicture (_t,r,_v)

= scale 0.2 0.2 $ translate xFloat yFloat redDisk

where

xFloat = realToFrac (xComp r)

yFloat = realToFrac (yComp r)

-- By default, gloss will attempt to do the simulation

-- in real time. If we’re animating the orbit of the moon

-- around the Earth, we don’t want to watch the computer

-- for one month to see one orbit.

-- A number greater than one here is a speedup factor.

-- A number less than one is a slow-down factor.

timeScale :: Double

timeScale = 3

14.3. ANIMATION 147

projectileMotionNetForce :: Mass -> Force

projectileMotionNetForce m = m *^ vec 0 (-9.8) 0

projectileMotionAccelerationFunction :: Mass

-> AccelerationFunction

projectileMotionAccelerationFunction m (_t,_r,_v)

= projectileMotionNetForce m ^/ m

-- The rule for updating the "model" is just to take

-- one Euler step!

simStep :: ViewPort -> Float -> StateTuple -> StateTuple

simStep _ dt

= eulerCromerStep dtScaled

(projectileMotionAccelerationFunction projectileMass)

where

dtScaled = timeScale * realToFrac dt

-- The main program creates a window and does our animation.

-- We need to give it an initial "model" (modelInitial),

-- a function to translate from model to picture

-- (modelToPicture), and an update rule (simStep).

main :: IO ()

main = simulate

(InWindow "Projectile Motion" (600, 600) (10, 10))

white 20 modelInitial modelToPicture simStep

Activity 14.3. Return to the satellite orbiting the Earth. Write a Haskell
program to animate your satellite’s motion around the Earth. Show that by
using different initial conditions, you can achieve circular orbits and elliptical
orbits.

148 CHAPTER 14. MECHANICS IN THREE DIMENSIONS

Chapter 15

Multiple Objects in Three
Dimensions

15.1 The State of a Physical System

One fruitful way to structure our thinking about a number of physical theories
revolves around the concept of state. The state-based paradigm picks out
time as a special quantity. The state of a physical system is the collection
of information needed to say precisely what is going on with the system at
this instant of time. The state represents the current “state of affairs” of the
system. At a later instant of time, we expect the system to be described by
a different state.

Given a physical system that we wish to understand (say the motion
of a baseball), the state-based paradigm suggests the following conceptual
division.

1. Exactly what information is required to specify the state of the system?

2. What is the state at some initial time?

3. By what rule does the state change with time?

Question 1 asks how we will model our system. If our system is a baseball,
one choice is to model the system as a point particle, ignoring size and
rotation of the ball. In this case, we could choose the state to consist of the
instantaneous displacement of the ball from some reference point along with
the instantaneous velocity of the ball. Alternatively, if the rotation of the

149

150 CHAPTER 15. MULTIPLE OBJECTS IN THREE DIMENSIONS

ball is important, we could model the ball as a rigid body. In this case, the
state would consist of the displacement and velocity of the center of the ball
along with parameters describing the orientation and angular velocity of the
ball. A third alternative, if we wish to take into consideration air resistance
on a windy day, could require parameters to describe the velocity and even
perhaps the density of the air through which the ball passes.

Question 3 requires a physical theory to answer. In the case of mechanics,
Newton’s second law (along with Newton’s third law for multiple objects)
gives the rule, in the form of a differential equation, by which the state
changes in time.

The quantities that we are often interested in are functions of the system
state.

Question 2 is, in some sense, the smallest question. It may even be
possible to do some analysis without an answer to question 2. But if we wish
to know properties of a system at a later time, then we wish to know the
state at a later time, and this typically requires knowing the state at some
earlier time.

The answer to question 1 is a data type. The answer to question 2 is a
value of this data type.

Let’s illustrate these ideas by writing some code to animate the Sun,
Earth, and Moon evolving under their mutual gravitational attraction.

{-# OPTIONS_GHC -Wall #-}

-- Animation of Earth and Moon orbiting around a fixed Sun

import Physics.Learn.SimpleVec

import Graphics.Gloss

import Graphics.Gloss.Interface.Pure.Simulate

type Time = Double

type TimeStep = Double

type Pos = Vec

type Vel = Vec

type Acceleration = Vec

type Mass = Double

15.1. THE STATE OF A PHYSICAL SYSTEM 151

type GravConstant = Double

-- First Earth, then Moon

type SystemState = (Time,[(Pos,Vel)])

type AccelerationFunction = SystemState -> [Acceleration]

-- SEM units

-- Let’s depart from SI units and use units chosen for the problem.

-- This way, our numbers will be closer to 1 and easier to think about.

-- 1 SEMLength = Sun-Earth separation

-- 1 SEMMass = 1 Solar mass (Sun’s mass)

-- 1 SEMTime = 1/12 Year

lengthFactor, massFactor, timeFactor :: Double

lengthFactor = 1 / 1.496e11 -- SEMLength / m

massFactor = 1 / 1.99e30 -- SEMMass / kg

timeFactor = 12 / (365.25 * 24 * 60 * 60) -- SEMTime / s

gGrav :: GravConstant

gGrav = 6.67e-11 * lengthFactor**3 / massFactor / timeFactor**2

massSun, massEarth, massMoon :: Mass

massSun = 1.99e30 * massFactor

massEarth = 5.98e24 * massFactor

massMoon = 7.35e22 * massFactor

radiusSun :: Double

--radiusSun = 6.96e8 * lengthFactor

radiusSun = 0.25

radiusEarth :: Double

--radiusEarth = 6.38e6 * lengthFactor

radiusEarth = 0.04

152 CHAPTER 15. MULTIPLE OBJECTS IN THREE DIMENSIONS

radiusMoon :: Double

--radiusMoon = 1.74e6 * lengthFactor

radiusMoon = 0.02

earthSunDistance :: Double

earthSunDistance = 1.496e11 * lengthFactor

year :: Double

year = 365.25*24*60*60 * timeFactor

moonEarthDistance :: Double

moonEarthDistance = 3.84e8 * lengthFactor

-- Derived constants

initialEarthSpeed :: Double

initialEarthSpeed = 2*pi*earthSunDistance/year

initialMoonSpeedwrtE :: Double

initialMoonSpeedwrtE = sqrt (gGrav * massEarth / moonEarthDistance)

initialState1 :: SystemState

initialState1 = (0,[(vec earthSunDistance 0 0,vec 0 initialEarthSpeed 0)

,(vec (earthSunDistance + moonEarthDistance) 0 0

,vec 0 (initialEarthSpeed + initialMoonSpeedwrtE) 0)])

eulerCromerStep :: TimeStep -> AccelerationFunction -> SystemState -> SystemState

eulerCromerStep dt a (t,rvs) = (t + dt,rvsNew)

where

as = a (t,rvs)

(rs,vs) = unzip rvs

rsNew = zipWith (^+^) rs (map (^* dt) vsNew)

vsNew = zipWith (^+^) vs (map (^* dt) as)

rvsNew = zip rsNew vsNew

earthMoonGravity :: AccelerationFunction

earthMoonGravity (_,[(rE,_),(rM,_)]) = [aE,aM]

15.1. THE STATE OF A PHYSICAL SYSTEM 153

where

rEM = rE ^-^ rM

fES = (-gGrav) * massEarth * massSun *^ rE ^/ magnitude rE ** 3

fEM = (-gGrav) * massEarth * massMoon *^ rEM ^/ magnitude rEM ** 3

fE = fES ^+^ fEM

aE = fE ^/ massEarth

fMS = (-gGrav) * massMoon * massSun *^ rM ^/ magnitude rM ** 3

fME = negateV fEM

fM = fMS ^+^ fME

aM = fM ^/ massMoon

earthMoonGravity _ = error "earthMoonGravity: bad error"

fakeMoonPos :: Vec -> Vec -> Vec

fakeMoonPos rE rM = rE ^+^ 50 *^ (rM ^-^ rE)

-- Gloss’s idea of "world" is the same as our idea of state,

-- that is, the information required to express the current "state of affairs"

-- of our system.

-- The initial world is the initial SystemState.

worldInitial :: SystemState

worldInitial = initialState1

-- This function defines a disk in terms of Gloss’s ThickCircle

disk :: Double -> Picture

disk r = ThickCircle (radius/2) radius

where radius = realToFrac r

-- A yellow disk will represent the Sun

yellowDisk :: Picture

yellowDisk = Color yellow (disk radiusSun)

-- A blue disk will represent the Earth

blueDisk :: Picture

blueDisk = Color blue (disk radiusEarth)

-- A white disk will represent the Moon

whiteDisk :: Picture

154 CHAPTER 15. MULTIPLE OBJECTS IN THREE DIMENSIONS

whiteDisk = Color white (disk radiusMoon)

-- This function tells what the picture should look like for a given

-- state of affairs.

worldToPicture :: SystemState -> Picture

worldToPicture (_t,[(rE,_vE),(rM,_vM)])

= scale 200 200 $ pictures [yellowDisk

,translate xE yE blueDisk

,translate xMf yMf whiteDisk

]

where

xE = realToFrac (xComp rE)

yE = realToFrac (yComp rE)

xMf = realToFrac (xComp $ fakeMoonPos rE rM)

yMf = realToFrac (yComp $ fakeMoonPos rE rM)

worldToPicture _ = error "worldToPicture: unexpected input"

-- By default, gloss will attempt to do the simulation in real time.

-- A number greater than one here is a speedup factor.

-- A number less than one is a slow-down factor.

-- A time of one means one month (not one second, although the computer

-- will interpret it as one second).

timeScale :: Double

timeScale = 1

-- The rule for updating the "world" is just to take one Euler step!

simStep :: ViewPort -> Float -> SystemState -> SystemState

simStep _ dt = eulerCromerStep dtScaled earthMoonGravity

where

dtScaled = timeScale * realToFrac dt

-- The main program creates a window and does our animation.

-- We need to give it an initial "world" (worldInitial),

-- a function to translate from world to picture (worldToPicture),

-- and an update rule (simStep).

main :: IO ()

main = simulate (InWindow "Sun, Earth, Moon Animation" (600, 600) (10, 10))

15.2. MULTIPLE OBJECTS IN THREE DIMENSIONS 155

black 20 worldInitial worldToPicture simStep

15.2 Multiple Objects in Three Dimensions

If we are interested in the motion of more than one particle in three dimen-
sions, we need to keep track of the position and velocity for each particle.

Download the file sunEarthMoonTemplate.hs with the following com-
mand.

wget http://quantum.lvc.edu/walck/phy261/sunEarthMoonTemplate.hs

Take a look at this code to get an idea for how we might represent multiple
objects in Haskell. The code has some undefined functions that need to be
filled in before it will run.

Activity 15.1. Using realistic initial conditions, program an animation for
the sun, earth, and moon mutually interacting though gravity. Fix the sun
at the origin. Take into account the gravitational force of the moon on the
earth, the earth on the moon, the sun on the earth, and the sun on the
moon. The actual earth-sun separation is about 500 times the earth-moon
separation, so you won’t be able to resolve the earth and moon as separate
objects on the screen. In order to be able to see where the moon is relative
to the earth, I suggest the following.

Instead of displaying the moon at the position you calculate, display the
moon at a “fake” position that has the correct orientation, but is 50 times as
far from the Earth as you calculate. Here is an equation to use to calculate
a fake moon position:

rFM = rE + A(rM − rE)

where rFM is the position of the fake moon, rM is the position of the (real)
moon, rE is the position of the earth, and A is a magnification factor that
artificially magnifies the vector from earth to moon for display purposes. Try
A = 50 and see what happens. This fake moon is only for display purposes.
Its position should not show up in any of the actual physics equations. Show
me that your program works, and place a copy in my drop box.

156 CHAPTER 15. MULTIPLE OBJECTS IN THREE DIMENSIONS

15.3 Waves on a Flexible String

Imagine a flexible string, like a rubber band or a guitar string, with some
tension in it. The ends of the string are located at x = 0 and x = L, and are
held fixed at y = 0. The rest of the string is allowed to move.

We will view this string as being made up of N + 1 little pieces of mass,
with neighboring pieces connected by a linear spring with spring constant k.
The force on the jth little piece of mass is composed of two parts. There is
a force from the neighbor on the left and a force from the neighbor on the
right. The vector sum of these two forces is

Fj = −k(rj − rj−1)− k(rj − rj+1).

We are going to ignore any effects of gravity in this string vibration. (We
imagine that the elastic forces are much larger that the force of gravity would
be.) The expression above is appropriate when 1 ≤ j ≤ N − 1, that is, for
all of the little pieces of mass except the ones on each end. The pieces of
mass on the ends are held fixed. In other words, there is some other force
present (from whatever is constraining the end of the string to stay fixed) so
that the net force on the pieces of mass at the ends is zero.

F0 = 0

FN = 0

Putting all of this together, the net force on the jth piece of mass is given
by the following expression.

Fj =

{
0 , j = 0 or j = N

−k(rj − rj−1)− k(rj − rj+1) , 1 ≤ j ≤ N − 1

How do we talk about the initial conditions (or initial state) of the string?
There are a number of ways we could do this. In general, the string could
have both initial stretching (position) as well as initial velocity. Let’s confine
our attention to situations in which the initial velocity is zero. (So that we
imagine pulling the string back into a certain shape and letting go of it.) One
way to describe the initial configuration of the string is to give the vertical
(y) position as a function of the horizontal (x) position. This is the method
we use in the activity below.

15.3. WAVES ON A FLEXIBLE STRING 157

Activity 15.2. Animate a wave on a string. Use the force equation given
above to determine the motion of each little piece of the string. Try a number
of initial conditions on the string to make different kinds of waves.

1. Use the initial conditions

y(x) = y0 sin
πx

L
v(x) = 0.

What would you call this wave?

2. Use the initial condition

y(x) = y0 sin
2πx

L
v(x) = 0.

What would you call this wave?

3. Use the initial condition

y(x) =

{
y0 sin 4πx

L
, 0 ≤ x ≤ L/4

0 , x > L/4

v(x) = 0.

How would you describe this wave in words?

You may choose whatever values you like for the constants that show up in
this problem (k, L, y0, etc.).

To get started, you may download the file WaveOnStringTemplate.hs

with the following command and use it as a template for your program.

wget http://quantum.lvc.edu/walck/phy261/WaveOnStringTemplate.hs

Show me when you have your string animation working, and put a copy
in my drop box. The program you submit should include all three initial
conditions, with two of them commented out so that only one is “active”,
but that either of the other two could be easily substituted to be the active
initial condition.

158 CHAPTER 15. MULTIPLE OBJECTS IN THREE DIMENSIONS

Part III

Electromagnetic Theory

159

161

The great advance in the classical electromagnetic theory developed in the
19th century comes from the introduction of fields. Whereas Coulomb’s late
18th century view of electrical phenomena relies on a force exerted directly
by one charged object onto a distant charged object, the 19th century view
has charges producing electric and magnetic fields and those fields exerting
forces on charges. The electric and magnetic fields become players on the
theoretical stage of equal stature to the charged particles themselves, capable
of carrying energy and momentum. The Maxwell equations describe how
charges create fields, while the Lorentz force law describes how fields exert
force on charges.

Include Maxwell Equation/Lorentz force figure

162

Chapter 16

Coordinate Systems

Most of electromagnetic theory takes place in three-dimensional space. It will
be very helpful to us to be able to use cylindrical coordinates and spherical
coordinates in our description of three-dimensional space. Nevertheless, it is
also helpful to begin with two-dimensional polar coordinates as a stepping
stone to three-dimensional cylindrical coordinates.

16.1 Polar coordinates

We will use the variables s and φ for polar coordinates. The coordinate s is
the distance from the origin to a point in the plane, and the coordinate φ
is the angle between the x axis and a line joining the origin to a point. See
Figure 16.1.

The Cartesian coordinates x and y are related to the polar coordinates s
and φ by the following equations.

x = s cosφ

y = s sinφ

We introduce polar coordinate unit vectors. The unit vector ŝ points
away from the origin. (This is a well-defined direction at every point in the
plane except for the origin itself.) Equivalently, the unit vector ŝ points in
the direction for which φ stays constant and s increases. Similarly, the unit
vector φ̂ points in the direction for which s stays constant and φ increases.
We can write the polar coordinate unit vectors ŝ and φ̂ in terms of the

163

164 CHAPTER 16. COORDINATE SYSTEMS

x

y

φ

s

ŝ
φ̂

Figure 16.1: Polar coordinates.

16.2. CYLINDRICAL COORDINATES 165

Cartesian coordinate unit vectors x̂ and ŷ as follows.

ŝ =
xx̂ + yŷ√
x2 + y2

= cosφx̂ + sinφŷ

φ̂ = − sinφx̂ + cosφŷ

Problem 16.1. Show that the polar coordinate unit vectors form an or-
thonormal system. In other words, show that

ŝ · ŝ = 1

φ̂ · φ̂ = 1

ŝ · φ̂ = 0.

Problem 16.2. Write x̂ and ŷ in terms of ŝ and φ̂.

Unlike the Cartesian unit vectors x̂ and ŷ, the polar unit vectors ŝ and
φ̂ point in different directions at different points in the plane.

16.2 Cylindrical coordinates

We can use the cylindrical coordinates s, φ, and z to represent the location
of a point in space. The coordinate s is the distance from the z axis to the
point in space, the coordinate φ is the angle between the xz plane and the
plane containing the z axis and the point, and the coordinate z means the
same thing as in Cartesian coordinates (the distance from the xy plane). See
Figure 16.2. Cylindrical coordinates are closely related to polar coordinates
in that cylindrical coordinates describe the xy plane in a polar fashion, but
continue to use the Cartesian z coordinate.

The Cartesian coordinates x, y, and z are related to the cylindrical coor-
dinates s, φ, and z by the following equations.

x = s cosφ

y = s sinφ

z = z

We introduce cylindrical coordinate unit vectors. The unit vector ŝ points
away from the z axis. (This is a well-defined direction at every point in space

166 CHAPTER 16. COORDINATE SYSTEMS

x

y

z

φ

z

s

Figure 16.2: Cylindrical coordinates.

except for points on the z axis.) Equivalently, the unit vector ŝ points in the
direction for which φ and z stay constant and s increases. Similarly, the
unit vector φ̂ points in the direction for which s and z stay constant and φ
increases. Finally, the unit vector ẑ points in the direction for which s and φ
stay constant and z increases. We can write the cylindrical coordinate unit
vectors ŝ, φ̂, and ẑ in terms of the Cartesian coordinate unit vectors x̂, ŷ,
and ẑ as follows.

ŝ = cosφx̂ + sinφŷ

φ̂ = − sinφx̂ + cosφŷ

ẑ = ẑ

16.3 Spherical coordinates

We can use the spherical coordinates r, θ, and φ to represent the location
of a point in space. The coordinate r is the distance from the origin to the
point in space, the coordinate θ is the angle between the z axis and a line
from the origin to the point, and the coordinate φ is the angle between the

16.3. SPHERICAL COORDINATES 167

x

y

z

θ

r

φ

Figure 16.3: Spherical coordinates.

xz plane and the plane containing the z axis and the point. (The coordinate
φ has the same meaning in spherical coordinates that it does in cylindrical
coordinates.) See Figure 16.3.

The Cartesian coordinates x, y, and z are related to the spherical coor-
dinates r, θ, and φ by the following equations.

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

We introduce spherical coordinate unit vectors. The unit vector r̂ points
away from the origin. (This is a well-defined direction at every point in
space except for the origin itself.) Equivalently, the unit vector r̂ points in
the direction for which θ and φ stay constant and r increases. Similarly, the
unit vector θ̂ points in the direction for which r and φ stay constant and θ
increases. Finally, the unit vector φ̂ points in the direction for which r and
θ stay constant and φ increases. To write r̂ in terms of the Cartesian unit
vectors, we divide the position vector r = xx̂ + yŷ + zẑ by its magnitude
r =

√
x2 + y2 + z2. The expression for φ̂ is the same as it was for cylindrical

168 CHAPTER 16. COORDINATE SYSTEMS

coordinates. An expression for θ̂ can be found from θ̂ = φ̂× r̂. We can write
the spherical coordinate unit vectors r̂, θ̂, and φ̂ in terms of the Cartesian
coordinate unit vectors x̂, ŷ, and ẑ as follows.

r̂ =
xx̂ + yŷ + zẑ√
x2 + y2 + z2

= sin θ cosφx̂ + sin θ sinφŷ + cos θẑ

θ̂ = cos θ cosφx̂ + cos θ sinφŷ − sin θẑ

φ̂ = − sinφx̂ + cosφŷ

Problem 16.3. Show that the spherical coordinate unit vectors form an
orthonormal system. In other words, show that

r̂ · r̂ = 1

θ̂ · θ̂ = 1

φ̂ · φ̂ = 1

r̂ · θ̂ = 0

r̂ · φ̂ = 0

θ̂ · φ̂ = 0.

Problem 16.4. Write x̂, ŷ, and ẑ in terms of r̂, θ̂, and φ̂.

16.4 A type for position

We would like to have a Haskell type to describe the position of a point in
space. We would further like to be able to specify points in 3D space in
Cartesian, cylindrical, or spherical coordinates, and to access previously de-
fined positions in any of the coordinate systems, including a system different
from the one used to define it. Let’s code.

We begin by setting warnings on. I like to do this to get feedback on
things I might not have noticed and might not have intended.

{-# OPTIONS_GHC -Wall #-}

16.4. A TYPE FOR POSITION 169

The code we define in this chapter will form a module. Let’s give our
module the name CoordinateSystems so that we can import the definitions
we write here into our future work if we want to.

module CoordinateSystems where

Here we import some definitions from another module. We need to do this
at the top of the Haskell file, but we will explain the use of these imported
types and functions later in the chapter.

import SimpleVec

(Vec

, vec

, xComp

, yComp

, zComp

, iHat

, jHat

, kHat

, magnitude

, (^/)

, sumV

)

I like to imagine that I am working with real numbers (even though they
are approximations to real numbers), so I define a type R for real numbers.
We use the keyword type to make a type synonym.

type R = Double

The compiler now treats R and Double interchangeably. The type R is
just a shorthand for Double. I do this just because I like looking at R more
than I like looking at Double.

How can we use Haskell to describe a point in space? Option A is to use
a triple (R,R,R) of Cartesian coordinates. This is fine for many purposes. It
has the advantage of simplicity. It has the disadvantage that we already know
we are interested in using cylindrical and spherical coordinates, which are also

170 CHAPTER 16. COORDINATE SYSTEMS

triples of numbers. This puts us in the dangerous position of mistaking a
Cartesian (x, y, z) triple for a spherical (r, θ, φ) triple. The compiler can help
us not to make this mistake, but only if we make intelligent use of the type
system. Option A is workable, but dangerous. We can make better use of
the computer to help us avoid mistakes.

Option B is to use the Vec type for position, as we did in mechanics. The
Vec type clearly has Cartesian components, so it’s harder to get confused
compared with Option A. If we run into a triple (R,R,R) somewhere in code
we’ve previously written, the type does not tell us whether it’s a Cartesian
triple or a spherical triple. On the other hand, if we run into a Vec, we
know it is a Cartesian triple under the hood. Option B is workable. One
downside of Option B is that position is not really a vector, because vectors
are by definition things that can be added, and it doesn’t make sense to add
positions. If we think of position as a vector, it is vector from some fixed
origin. But adding vectors means putting them tip-to-tail, and this isn’t
really allowed for position “vectors” whose tails are fixed at the origin. The
other disadvantage of using Vec for position (Option B) is that the Haskell
type system cannot help us to distinguish position from any other Vec (such
as velocity, acceleration, or momentum).

Option C is to use Haskell’s facilities to make a brand new data type
ourselves, which can not be confused with any other data type. This is not
the simplest option, but it will give us the power of working with the three
coordinates systems we are interested in, and it will give us the advantage
that the compiler will not allow us to confuse position with velocity. We will
pursue Option C.

We construct a new type in Haskell with the data keyword.

data Position = Cart R R R

deriving (Show)

The Position that appears immediately to the right of the data keyword
is the name we give to the new type. The Cart that appears to the right
of the equals sign is called a data constructor . The type (Position in this
case) and the data constructor (Cart in this case) can have the same name
or different names. They live in different namespaces , so that even if they
have the same name (they don’t in this case), they are not the same object.
(Which is why we put the type in blue and the data constructor in black.)

16.4. A TYPE FOR POSITION 171

The data constructor is named Cart to indicate our intent to store po-
sitions in Cartesian coordinates regardless of the coordinate system used to
describe the position.

The data type Position by itself is not terribly useful. It is just a new
way to store three numbers. To be fair, it useful to have a way to store three
numbers that the compiler will not confuse with any other way of storing
three numbers (like a Vec). But the real usefulness of Position is that we
will now define three ways of making a Position (one for each coordinate
system), and three ways of using a Position (again, one for each coordinate
system.

A coordinate system is a function from three real numbers to space.

type CoordinateSystem = (R,R,R) -> Position

Here are the definitions for the three coordinate systems. For Cartesian
coordinates, we just stick the coordinates behind the data constructor Cart.
For cylindrical coordinates (s, φ, z), we convert to Cartesian and then ap-
ply the Cart constructor to the Cartesian values. For spherical coordinates
(r, θ, φ), we again apply the data constructor to the converted Cartesian val-
ues.

cartesian :: CoordinateSystem

cartesian (x,y,z)

= Cart x y z

cylindrical :: CoordinateSystem

cylindrical (s,phi,z)

= Cart (s * cos phi) (s * sin phi) z

spherical :: CoordinateSystem

spherical (r,theta,phi)

= Cart (r * sin theta * cos phi)

(r * sin theta * sin phi)

(r * cos theta)

The functions cartesian, cylindrical, and spherical are our three
ways of making a Position. Before we turn to the three ways of using a

172 CHAPTER 16. COORDINATE SYSTEMS

Position, we’ll define three helper functions that are almost the same as
cartesian, cylindrical, and spherical. These three functions have the
shortened names cart, cyl, and sph, and the only difference is that they take
their arguments in a curried style, one right after the other, rather than in a
triple. They are just convenient helping functions, and not really necessary.

cart :: R -- ^ x coordinate

-> R -- ^ y coordinate

-> R -- ^ z coordinate

-> Position

cart = Cart

cyl :: R -- ^ s coordinate

-> R -- ^ phi coordinate

-> R -- ^ z coordinate

-> Position

cyl s phi z = cylindrical (s,phi,z)

sph :: R -- ^ r coordinate

-> R -- ^ theta coordinate

-> R -- ^ phi coordinate

-> Position

sph r theta phi = spherical (r,theta,phi)

The function cart is a helping function to take three numbers x, y, and
z and form the appropriate position using Cartesian coordinates. The def-
inition of cart is given in point-free style. This means we omitted the pa-
rameters because they are identical on both sides of the equation. We could
have written cart x y z = Cart x y z in the last line and it would mean
the same thing. You can use regular style or point-free style, which ever
you prefer. We also could have written cart x y z = cartesian (x,y,z),
which would follow the pattern in the cylindrical and spherical cases.

The function cyl is a helping function to take three numbers s, φ, and
z and form the appropriate position using cylindrical coordinates. We just
call the function cylindrical to do the real work. The function sph is a
helping function to take three numbers r, θ, and φ and form the appropriate
position using spherical coordinates.

16.5. DISPLACEMENT 173

We said earlier that we would like to be able to look at an existing
Position in Cartesian, cylindrical, or spherical coordinates, regardless of
the coordinate system used to define the position. The follow three func-
tions show how to use a position to obtain a triple in the desired coordinate
system.

cartesianCoordinates :: Position -> (R,R,R)

cartesianCoordinates (Cart x y z) = (x,y,z)

cylindricalCoordinates :: Position -> (R,R,R)

cylindricalCoordinates (Cart x y z) = (s,phi,z)

where

s = sqrt(x**2 + y**2)

phi = atan2 y x

sphericalCoordinates :: Position -> (R,R,R)

sphericalCoordinates (Cart x y z) = (r,theta,phi)

where

r = sqrt(x**2 + y**2 + z**2)

theta = atan2 s z

s = sqrt(x**2 + y**2)

phi = atan2 y x

16.5 Displacement

A displacement is a vector. It is the vector that points from a source position
to a target position.

type Displacement = Vec

displacement :: Position -- ^ source position

-> Position -- ^ target position

-> Displacement

displacement (Cart x’ y’ z’) (Cart x y z) = vec (x-x’) (y-y’) (z-z’)

-- | Shift a position by a displacement.

174 CHAPTER 16. COORDINATE SYSTEMS

shiftPosition :: Displacement -> Position -> Position

shiftPosition v (Cart x y z)

= Cart (x + xComp v) (y + yComp v) (z + zComp v)

-- | An object is a map into ’Position’.

shiftObject :: Displacement -> (a -> Position) -> (a -> Position)

shiftObject d f = shiftPosition d . f

-- | A field is a map from ’Position’.

shiftField :: Displacement -> (Position -> v) -> (Position -> v)

shiftField d f = f . shiftPosition d

16.6 Scalar and vector fields

There are physical quantities, like volume charge density and electric po-
tential, that are best described by giving a number for each point in space.
These physical quantities are called scalar fields. The word field in physics
means a function of physical space, something that can take a different value
at each point in space. (The word field in mathematics means something
else.) A scalar field is a field in which the value assigned at each point in
space is a scalar, a number. Temperature is another example of a scalar
field. The temperature in one place (Annville, Pennsylvania, for example) is
usually different from the temperature at another place (Orlando, Florida,
say).

Since a scalar field associates a number with each position in space, it
makes sense to define a scalar field type to be a function from space to
numbers. A vector field associates a vector with each point in space. Electric
field and magnetic field are vector fields.

type ScalarField = Position -> R

type VectorField = Position -> Vec

Sometimes we want to be able to talk about a field without saying whether
it is a scalar field or a vector field. Here we use the type variable v to stand
for a type (probably the type will turn out to be R or Vec, but maybe there
will be times when it could be either and we don’t need to know).

16.6. SCALAR AND VECTOR FIELDS 175

type Field v = Position -> v

The unit vectors used with cylindrical and spherical coordinates, such
as ŝ, φ̂, r̂, and θ̂, are really unit vector fields, since their direction changes
depending on their location in space.

The vector fields ŝ and φ̂ are defined everywhere except on the z axis.

sHat :: VectorField

sHat r = vec (cos phi) (sin phi) 0

where

(_,phi,_) = cylindricalCoordinates r

phiHat :: VectorField

phiHat r = vec (-sin phi) (cos phi) 0

where

(_,phi,_) = cylindricalCoordinates r

Here are definitions for the unit vector fields r̂ and θ̂.

rHat :: VectorField

rHat rv = d ^/ magnitude d

where

d = displacement (cart 0 0 0) rv

thetaHat :: VectorField

thetaHat r = vec (cos theta * cos phi) (cos theta * sin phi) (-sin theta)

where

(_,theta,phi) = sphericalCoordinates r

We regard î, ĵ, and k̂ as simple unit vectors (Vecs), but we define x̂, ŷ,
and ẑ as unit vector fields (VectorFields), in analogy with ŝ, φ̂, r̂, and θ̂.

xHat :: VectorField

xHat = const iHat

176 CHAPTER 16. COORDINATE SYSTEMS

yHat :: VectorField

yHat = const jHat

zHat :: VectorField

zHat = const kHat

Scalar and vector fields can be added. Here are some functions to do that.

-- | Add scalar fields.

addScalarFields :: [ScalarField] -> ScalarField

addScalarFields flds r = sum [fld r | fld <- flds]

-- | Add vector fields.

addVectorFields :: [VectorField] -> VectorField

addVectorFields flds r = sumV [fld r | fld <- flds]

Chapter 17

Curves, Surfaces, and Volumes

Electrodynamics is a geometric subject. It will be useful for us to have types
for curves, surfaces, and volumes.

Let’s start coding. I like to turn warnings on so that the compiler will
tell me when I’m doing something I may not have intended.

{-# OPTIONS_GHC -Wall #-}

Let’s give the code in this chapter a module name, in case we want to
import it later for use with some other code.

module Geometry where

We will use the type Position that we defined in the module CoordinateSystems
in chapter 16, so we import that at the beginning of the Haskell code file.

import CoordinateSystems

(R

, Position

, cylindrical

, spherical

, cart

, cyl

, sph

177

178 CHAPTER 17. CURVES, SURFACES, AND VOLUMES

, shiftPosition

, displacement

)

import SimpleVec

((*^)

)

17.1 Curves

How can we describe a curve in space? We can parametrize the curve so there
is a real number associated with each point on the curve, and then give (by
way of a function) the position in space associated with each parametrized
point on the curve. For example, a line along the y axis could be parametrized
with the function

t 7→ (0, t, 0).

A circle with radius 2 in the xy plane centered at the origin could be parametrized
with the function

t 7→ (2 cos t, 2 sin t, 0).

In these functions, t serves only as the name of a parameter (we could have
chosen s or any convenient symbol) and has nothing to do with time.

A parametrized curve therefore requires a function with type R -> Position

sending a parameter t :: R along the curve to a point r :: Position in
space. But we also need starting and ending points for our curve. For ex-
ample, the circle in the xy plane with radius 2 centered at the origin can be
specified with the function

t 7→ (2 cos t, 2 sin t, 0),

starting parameter ta = 0, and ending parameter tb = 2π.
If we use the same function and starting parameter, but change the ending

parameter to tb = π, we get a semicircle (the half circle above the x axis).
The starting and ending points can be specified by a starting parameter

startingCurveParam :: R (which we called ta above) and an ending pa-
rameter endingCurveParam :: R (which we called tb above). We specify a
curve, then, with three pieces of data: a function, a starting parameter, and
an ending parameter.

17.1. CURVES 179

Haskell’s data types can be used to combine pieces of data that really
belong together. For the curve, it will be very convenient to have a single
type Curve that contains the function, the starting point, and the ending
point.

data Curve = Curve { curveFunc :: R -> Position

, startingCurveParam :: R

, endingCurveParam :: R

}

The Curve that appears immediately to the right of the data keyword is
the name we give to the new type. The Curve that appears to the right of the
equals sign is called a data constructor . The type (Curve in this case) and
the data constructor (Curve in this case) can have the same name or different
names. They live in different namespaces , so that even if they have the same
name (as they do in this case), they are not the same object. (Which is why
we put the type in blue and the data constructor in black.)

Inside the curly braces, we see the three pieces of data, along with their
types, that make up the curve type. Let’s play with this in GHCi.

GHCi :l Charge.lhs

GHCi
:t curveFunc

 curveFunc :: Curve -> R -> Position

Let’s think about the type of curveFunc. It takes a Curve and produces
a function R -> Position. It is giving us the curveFunc of a particular
Curve. Let’s code the example of the circle with radius 2 in the xy plane
centered at the origin.

circle2 :: Curve

circle2 = Curve (\t -> cart (2 * cos t) (2 * sin t) 0) 0 (2*pi)

We are naming our curve circle2 (to remind us of the radius 2). The
first line above is a declaration, declaring that circle2 has the type (which
we just created) Curve. The second line is the definition of circle2. To
the right of the equals sign we use the data constructor Curve followed by
the three data pieces. Here we have chosen to give the three pieces in order,

180 CHAPTER 17. CURVES, SURFACES, AND VOLUMES

without reference to their names. There is also an alternative syntax you can
use to give the data pieces by name. Note the use of an anonynous function
to specify the curve function. We need parentheses around the anonymous
function and the 2*pi so that the compiler can clearly identify the three data
pieces.

A circle in the xy plane centered at the origin is easier to express in
cylindrical coordinates than in Cartesian. In cylindrical coordinates, our
circle has the constant values s = 2 and z = 0. Only the φ coordinate
changes from 0 to 2π. This suggests that we use the φ coordinate as our
parameter for the curve.

circle2’ :: Curve

circle2’ = Curve (\phi -> cyl 2 phi 0) 0 (2*pi)

Note the cyl function used to specify the curve in cylindrical coordi-
nates. The curve circle2’ is the same as the curve circle2. Unfortunately,
Haskell cannot check that this is true, because it cannot compare functions
for equality. It is true nonetheless.

17.2 Surfaces

To describe surface charge density, we will first need a way to describe a
surface in space. A surface is a parametrized function from two parameters to
space. For example, we can parametrize the unit sphere with two parameters,
θ and φ as the function

(θ, φ) 7→ (sin θ cosφ, sin θ sinφ, cos θ)

and the ranges 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π.
For a second example, suppose we want to parametrize the surface that

lies in the xy plane, bounded by the parabola y = x2 and the line y = 4.
This surface is shown in Figure 17.1. In this case, it makes sense to use x
and y as the parameters. The parametrized function for the surface is not
very exciting.

(x, y) 7→ (x, y, 0)

The interesting part about this surface is the specification of the boundary.
There is a lower curve y = x2 that gives the bottom boundary, an upper

17.2. SURFACES 181

−3 −2 −1 0 1 2 3

0

1

2

3

4

x

y

A Parametrized Surface

Figure 17.1: A parametrized surface

curve y = 4 that gives that gives the top boundary, a lower limit of x = −2
that specifies the left boundary, and an upper limit of x = 2 that specifies
the right boundary.

For a general surface, we will call our two parameters s and t. To specify
a general surface, there are five pieces of data we must give: a parametrizing
function of two variables, a lower curve, an upper curve, a lower limit, and
an upper limit. Here is the data type definition for a general surface.

data Surface = Surface { surfaceFunc :: (R,R) -> Position

, lowerLimit :: R -- ^ s_l

, upperLimit :: R -- ^ s_u

, lowerCurve :: R -> R -- ^ t_l(s)

, upperCurve :: R -> R -- ^ t_u(s)

}

The function surfaceFunc is the parametrizing function that maps (s, t)
into a Position. The lower curve is given as a function tl(s) that gives the
lowest value of t on the surface for each value of the parameter s. The upper
curve is given as a function tu(s) that gives the highest value of t on the

182 CHAPTER 17. CURVES, SURFACES, AND VOLUMES

surface for each value of the parameter s. The lower limit sl is the lowest
value of s on the surface, and the upper limit su is the largest value of s on
the surface.

To code the unit sphere we discussed above, we can do the following.

unitSphere :: Surface

unitSphere = Surface (\(th,phi) -> cart (sin th * cos phi)

(sin th * sin phi)

(cos th))

0 pi (const 0) (const $ 2*pi)

In this case, we want constant functions for the lower and upper curves,
so we use the const function to turn a number into a constant function.

Not surprisingly, it’s easier to specify a unit sphere in spherical coordi-
nates.

unitSphere’ :: Surface

unitSphere’ = Surface (\(th,phi) -> sph 1 th phi)

0 pi (const 0) (const $ 2*pi)

In spherical coordinates, we used the same parameters (θ, φ), the same
lower and upper curves, and the same limits. Only the parametrizing func-
tion changes. The surface unitSphere’ is the same surface as unitSphere.
Again, Haskell cannot confirm this for us, but it is true.

Let’s code up our parabola surface from Figure 17.1.

parabolaSurface :: Surface

parabolaSurface = Surface (\(x,y) -> cart x y 0)

(-2) 2 (\x -> x*x) (const 4)

Here are some other examples of surfaces. The first is a sphere with given
radius centered at the origin. The second is the northern hemisphere of the
unit sphere. The third is a disk in the xy plane.

centeredSphere :: R -> Surface

centeredSphere r = Surface (\(th,phi) -> sph r th phi)

17.3. VOLUMES 183

0 pi (const 0) (const $ 2*pi)

northernHemisphere :: Surface

northernHemisphere = Surface (\(th,phi) -> sph 1 th phi)

0 (pi/2) (const 0) (const $ 2*pi)

disk :: R -> Surface

disk radius = Surface (\(s,phi) -> cyl s phi 0)

0 radius (const 0) (const (2*pi))

17.3 Volumes

When we have charge that is distributed throughout a volume, we will use
a volume charge density to describe this, and we will need a new data type
to describe a volume. We need to specify seven pieces of data to describe
a volume. These are (i) a parametrizing function from three parameters
(s, t, u) into space, (ii) a lower surface ul(s, t) describing the lowest value of
u for each (s, t), (iii) an upper surface uu(s, t) describing the highest value
of u for each (s, t), (iv) a lower curve tl(s) describing the lowest value of t
for each value of s, (v) an upper curve tu(s) describing the highest value of t
for each value of s, (vi) a lower limit sl describing the lowest value of s, and
(vii) an upper limit su describing the highest value of s.

Here is the definition of the Volume data type.

data Volume = Volume { volumeFunc :: (R,R,R) -> Position

, loLimit :: R -- ^ s_l

, upLimit :: R -- ^ s_u

, loCurve :: R -> R -- ^ t_l(s)

, upCurve :: R -> R -- ^ t_u(s)

, loSurf :: R -> R -> R -- ^ u_l(s,t)

, upSurf :: R -> R -> R -- ^ u_u(s,t)

}

The volumeFunc has type (R,R,R) -> Position. Recall from Chapter
16 that this type is the same as CoordinateSystem. We will often want to

184 CHAPTER 17. CURVES, SURFACES, AND VOLUMES

use cartesian, cylindrical, or spherical as our volumeFunc, although it
is possible to invent your own coordinate system.

17.3.1 A unit ball

As a first example, here is a unit ball, centered at the origin.

unitBall :: Volume

unitBall = Volume spherical 0 1 (const 0) (const pi)

(_ _ -> 0) (_ _ -> 2*pi)

For the volumeFunc, we use spherical, which means that the parameters
(s, t, u) are the spherical coordinates (r, θ, φ). We must provide a lower limit
rl, an upper limit ru, a lower curve θl(r), an upper curve θu(r), a lower surface
φl(r, θ), and an upper surface φu(r, θ). For a ball, we should pick

rl = 0

ru = 1

θl(r) = 0

θu(r) = π

φl(r, θ) = 0

φu(r, θ) = 2π

Notice that θl is the function r 7→ 0 (in Haskell notation \r -> 0 or _ -> 0).
This the same as the constant function that returns 0 for any input (in Haskell
notation const 0). The function φl takes two inputs and returns 0 (in Haskell
notation _ _ -> 0).

Exercise 17.1. Replace the undefined below with a definition of an upper
half ball (z ≥ 0) with unit radius, centered at the origin.

northernHalfBall :: Volume

northernHalfBall = undefined

Exercise 17.2. Replace the undefined below with a definition of a ball with
given radius, centered at the origin. (The R is the type of the radius, and
you may want to put a variable for the radius on the left of the equals sign.)

17.3. VOLUMES 185

centeredBall :: R -> Volume

centeredBall = undefined

-- | Cylinder with given radius and height. Circular base of the cylinder

-- is centered at the origin. Circular top of the cylinder lies in plane z = h.

centeredCylinder :: R -- radius

-> R -- height

-> Volume -- cylinder

centeredCylinder r h = Volume cylindrical 0 r (const 0) (const (2*pi)) (_ _ -> 0) (_ _ -> h)

-- | The straight-line curve from one position to another.

straightLine :: Position -- ^ starting position

-> Position -- ^ ending position

-> Curve -- ^ straight-line curve

straightLine r1 r2 = Curve f 0 1

where

f t = shiftPosition (t *^ d) r1

d = displacement r1 r2

186 CHAPTER 17. CURVES, SURFACES, AND VOLUMES

Chapter 18

Electric Charge

Some particles have electric charge. We say that protons are positively
charged, electrons are negatively charged, and neutrons have no net charge.
Photons and neutrinos have no charge. All of the particles that we know of
that have charge also have mass.

18.1 Charge Distributions

Electric charge is the fundamental quantity responsible for electromagnetic
effects and plays a key role in electromagnetic theory. In classical electro-
magnetic theory, which we study in this book, we will sometimes think of
charge as associated with a particle, in which case we call the charge a point
charge, imagining that it has a location in space, but no spatial extent. The
SI unit for charge is the Coulomb (C). The Coulumb is a very large unit of
charge. The charge of a proton, for example, is 1.602× 10−19 C, a very small
number of Coulombs. We typically use the symbols q and Q for charge.

In classical electromagnetic theory, we also want to sometimes think of
charge as a fluid, something that can be continuously distributed throughout
a region of space. In fact, there are three types of continuous charge dis-
tributions that we use. First, there is charge continously distributed along
a one-dimensional path such as a line or a curve. In this case, we speak of
the linear charge density λ (greek letter lambda), meaning the charge per
unit length. The SI unit for linear charge density is the Coulomb per meter
(C/m).

Second, there is charge continously distributed along a two-dimensional

187

188 CHAPTER 18. ELECTRIC CHARGE

Charge distribution Dimensionality Symbol SI unit
Point charge 0 q, Q C
Linear charge density 1 λ C/m
Surface charge density 2 σ C/m2

Volume charge density 3 ρ C/m3

Table 18.1: Charge distributions

surface. In this case, we speak of the surface charge density σ (greek letter
sigma), meaning the charge per unit area. The SI unit for surface charge
density is the Coulomb per square meter (C/m2). Finally, there is charge
continously distributed throughout a three-dimensional volume. In this case,
we speak of the volume charge density ρ (greek letter rho), meaning the
charge per unit volume. The SI unit for volume charge density is the Coulomb
per cubic meter (C/m3). These charge distributions are summarized in Table
18.1.

By the end of this chapter, we will have in hand a new type capable of
holding point charges, charge densities of any dimensionality, and combina-
tions of distributions (like a point charge and a surface charge). We will
call this new type ChargeDistribution. Since charge is the fundamental
source of electromagnetic effects, this ChargeDistribution type will play
an important role. We will write a function to find the total charge of a
ChargeDistribution, and in Chapter 19 we will write a function to cal-
culate the electric field produced by a ChargeDistribution. Let’s start
coding.

I like to turn warnings on so that the compiler will tell me when I’m doing
something I may not have intended.

{-# OPTIONS_GHC -Wall #-}

Let’s give the code in this chapter a module name, in case we want to
import it later for use with some other code.

module Charge where

We will use types and functions defined in Chapters 16 and 17 as well as
Appendix C, so we import those types and functions at the beginning of the
Haskell code file.

18.1. CHARGE DISTRIBUTIONS 189

import CoordinateSystems

(R

, Position

, ScalarField

, cart

)

import Geometry

(Curve(..)

, Surface(..)

, Volume(..)

)

import VectorIntegrals

(scalarLineIntegral

, scalarSurfaceIntegral

, scalarVolumeIntegral

)

Now that we are talking about charge, I am going to define a type syn-
onym for charge.

type Charge = R

Defining a new type for charge in this way is half good and half silly. It’s
good in that human readers of the code (including the writer of the code)
will know the intent of an expression with type Charge. It is, in this sense, a
form of documentation for the code. It is silly because the compiler doesn’t
make any distinction between Charge and R and Double, so it cannot help
the writer to avoid using charge in any place in which an R or a Double

could be used. One of the main purposes of types is separating things that
should be separated, and letting the computer help enforce that separation.
Charge is not at all the same as time, for example, which would also probably
be described by a real number R. Haskell has a mechanism to define a new
type that will not be confused with any other type. (The way to do this
uses Haskell’s data keyword instead of the type keyword. Haskell allows the
construction of sophisticated algebraic data types that provide the power to
separate ideas that should be separated.) Defining a new data type would
be a very reasonable thing to do here, but there is a bit of extra effort and

190 CHAPTER 18. ELECTRIC CHARGE

overhead involved, and so I have chosen the simplicity of the type method
over the power of the data method.

Defining R to be the same as Double (which we did in chapter 16 in the
module CoordinateSystems) is completely reasonable. We’re just saying
that there is another name we’d rather use. Defining Charge to be the same
as R is only half reasonable. Charge is only one of several physical quantities
that we want to use real numbers to represent.

What about the continuous charge densities? What information is re-
quired to specify these?

Let’s start with linear charge density. To describe continuous charge that
is (not necessarily uniformly) spread over a one-dimensional curve, we need
to (a) describe the geometry of the curve in space, and (b) give a value for
the linear charge density (in C/m, say) at each point on the curve.

For item (a), we will use the Curve type that we defined in Chapter 17.
For item (b), to describe a linear charge density, we need to give its value at
each point on the curve. There are two ways to do this. Option 1 is to give
the linear charge density value as a function of the curve parameter. Option
2 is to give the value as a function of spatial coordinates. We will choose
option 2. This means that to specify a linear charge density, we must give a
ScalarField along with a Curve.

To specify a surface charge density, we must give a ScalarField along
with a Surface. For a volume charge density, we need a ScalarField along
with a Volume.

18.2 A type for charge distribution

A charge distribution is a point charge, a line charge, a surface charge, a
volume charge, or a combination of these. The ScalarField describes a
linear charge density, a surface charge density, or a volume charge density.
For a point charge, we need to specify the position. Location information for
the continous densities is included in the Curve, Surface, or Volume. We
also give a way to combine multiple charges (of arbitrary types) into a single
charge distribution.

data ChargeDistribution

= PointCharge Charge Position

18.3. TOTAL CHARGE 191

| LineCharge ScalarField Curve

| SurfaceCharge ScalarField Surface

| VolumeCharge ScalarField Volume

| MultipleCharges [ChargeDistribution]

Let’s write some examples of charge distribitions. The charge distribution
of a proton at the origin can be defined as follows.

protonOrigin :: ChargeDistribution

protonOrigin = PointCharge 1.602e-19 (cart 0 0 0)

Here I am using SI units (giving the charge in Coulombs).
A line segment of charge lying on the x axis from x = −1 m to x = 1 m

with a uniform linear charge density λ = 0.5 C/m can be written as follows.

positiveStick :: ChargeDistribution

positiveStick = LineCharge (const 0.5)

(Curve (\t -> cart t 0 0) (-1) 1)

18.3 Total charge

Here is a function to calculate the total charge of any charge distribution.
For line charges, we use a scalar line integral. For surface charges, we use a
scalar surface integral. For volume charges, we use a scalar volume integral.
These integrals are defined and described in Appendix C. For a combination
of multiple charges (which could be of different sorts, like a point charge and
a surface charge) we simply add the total charges of each part.

totalCharge :: ChargeDistribution -> Charge

totalCharge (PointCharge q _)

= q

totalCharge (LineCharge lambda c)

= scalarLineIntegral 1000 lambda c

totalCharge (SurfaceCharge sigma s)

= scalarSurfaceIntegral 200 200 sigma s

192 CHAPTER 18. ELECTRIC CHARGE

totalCharge (VolumeCharge rho v)

= scalarVolumeIntegral 50 50 50 rho v

totalCharge (MultipleCharges ds)

= sum [totalCharge d | d <- ds]

Let’s check the total charge of the distributions we defined above.

GHCi :l Charge.lhs

GHCi
totalCharge protonOrigin

 1.602e-19

GHCi
totalCharge positiveStick

 1.0000000000000009

Chapter 19

Electric Field

In the 1700s, people discovered that there were two types of electric charge.
Charges of the same type repelled each other and charges of different types
attracted each other. It was convenient to call one type of charge positive
and the other type negative. The proton ended up positive and the electron
negative, but that was an arbitrary choice that everyone now respects as a
convention.

19.1 Coulomb’s law

Coulomb was the first to give a quantitative relationship describing the inter-
action of two charged particles. He showed that the force exerted by one point
charge on another is proportional to each charge, and inversely proportional
to the square of the distance between them. As an equation, Coulomb’s law
can be written

F = k
|q1q2|
r2

(19.1)

where q1 is the charge of particle 1, q2 is the charge of particle 2, and r is
the distance between the particles. This equation gives the magnitude of the
force produced by particle 2 on particle 1 (which, by Newton’s third law,
is the same as the magnitude of the the force produced by particle 1 on
particle 2). The direction of the force depends on the signs of the charges;
the force is repulsive for like charges and attractive for unlike charges. In SI
units, the constant k = 9× 109 N m2/C2 (approximately).

We can use vector notation to give a more comprehensive version of
Coulomb’s law, which includes the direction of the force in the equation.

193

194 CHAPTER 19. ELECTRIC FIELD

r21

1

2

Figure 19.1: Definition of displacement vector r21

Define the displacement vector r21 to be the vector that points from parti-
cle 1 to particle 2. (See Figure 19.1.)

The force F21 exerted on particle 2 produced by particle 1 is given in
vector notation as follows.

F21 = kq1q2
r21

|r21|3
(19.2)

Notice that if both charges are positive, then the force F21 on particle 2 points
in the same direction as the displacement vector r21 (away from particle 1, as
we expect for like charges). If the charges have unlike signs, then the direction
of F21 will flip, indicating an attractive force. In summary, Coulomb’s law
19.1 is simpler, and Coulomb’s law 19.2 is more powerful, since the direction
of the force is encoded in the equation.

19.2 Electric Field

In the 1800s, Faraday and Maxwell discovered a new way to think about
electric (and magnetic) phenomena, a way that forms the basis for today’s
electromagnetic theory. In this 19th century view, one particle does not
directly apply a force to another particle, as Coulomb’s law would imply.
Instead, one particle creates an electric field, and the electric field applies a
force to the second particle.

What is this electric field? The electric field is a vector field of the kind
we talked about in Section 16.6. The electric field is composed of a vector
at each point in space that describes (almost) what the force would be on a
particle if there were a particle at that point in space.

19.2. ELECTRIC FIELD 195

Particle

1

creates Electric

Field

exerts

force on

Particle

2

Figure 19.2: Conceptual diagram of the role of the electric field when two
charged particles are present

Let us explain the Coulomb situation in Figure 19.1 in terms of electric
field. Particle 1 creates an electric field E. This electric field specifies a
vector for each point r in space, given by the following equation.

E(r) = kq1
r− r1

|r− r1|3
(19.3)

The force on a particle with charge q sitting in an electric field E is

F = qE (19.4)

Where by E we mean the particular electric field vector at the location of
the particle.

F2 = q2E(r2) (19.5)

F21 = q2E(r2) = kq1q2
r2 − r1

|r2 − r1|3
= kq1q2

r21

|r21|3
(19.6)

and we get back the Coulomb result. Why introduce the electric field if we
just get back Coulomb’s result?

Talk about symmetry. Particle 2 also contributes to E.

{-# OPTIONS_GHC -Wall #-}

module ElectricField where

import CoordinateSystems

(Position

, ScalarField

196 CHAPTER 19. ELECTRIC FIELD

, VectorField

, displacement

, addScalarFields

, addVectorFields

, cart

)

import Geometry

(Curve(..)

, Surface(..)

, Volume(..)

, straightLine

)

import Charge

(Charge

, ChargeDistribution(..)

, positiveStick

)

import SimpleVec

(Vec

, (*^)

, (^/)

, magnitude

)

import VectorIntegrals

(scalarLineIntegral

, vectorLineIntegral

, dottedLineIntegral

, scalarSurfaceIntegral

, vectorSurfaceIntegral

, dottedSurfaceIntegral

, scalarVolumeIntegral

, vectorVolumeIntegral

)

-- | Electric field produced by a point charge.

-- The function ’eField’ calls this function

-- to evaluate the electric field produced by a point charge.

19.2. ELECTRIC FIELD 197

eFieldFromPointCharge

:: Charge -- ^ charge (in Coulombs)

-> Position -- ^ of point charge

-> VectorField -- ^ electric field (in V/m)

eFieldFromPointCharge q r’ r

= (k * q) *^ d ^/ magnitude d ** 3

where

k = 9e9 -- 1 / (4 * pi * epsilon0)

d = displacement r’ r

-- | Electric field produced by a line charge.

-- The function ’eField’ calls this function

-- to evaluate the electric field produced by a line charge.

eFieldFromLineCharge

:: ScalarField -- ^ linear charge density lambda

-> Curve -- ^ geometry of the line charge

-> VectorField -- ^ electric field (in V/m)

eFieldFromLineCharge lambda c r

= k *^ vectorLineIntegral 1000 integrand c

where

k = 9e9 -- 1 / (4 * pi * epsilon0)

integrand r’ = lambda r’ *^ d ^/ magnitude d ** 3

where

d = displacement r’ r

-- | Electric field produced by a surface charge.

-- The function ’eField’ calls this function

-- to evaluate the electric field produced by a surface charge.

eFieldFromSurfaceCharge

:: ScalarField -- ^ surface charge density sigma

-> Surface -- ^ geometry of the surface charge

-> VectorField -- ^ electric field (in V/m)

eFieldFromSurfaceCharge sigma s r

= k *^ vectorSurfaceIntegral 200 200 integrand s

where

k = 9e9 -- 1 / (4 * pi * epsilon0)

integrand r’ = sigma r’ *^ d ^/ magnitude d ** 3

198 CHAPTER 19. ELECTRIC FIELD

where

d = displacement r’ r

-- | Electric field produced by a volume charge.

-- The function ’eField’ calls this function

-- to evaluate the electric field produced by a volume charge.

eFieldFromVolumeCharge

:: ScalarField -- ^ volume charge density rho

-> Volume -- ^ geometry of the volume charge

-> VectorField -- ^ electric field (in V/m)

eFieldFromVolumeCharge rho v r

= k *^ vectorVolumeIntegral 50 50 50 integrand v

where

k = 9e9 -- 1 / (4 * pi * epsilon0)

integrand r’ = rho r’ *^ d ^/ magnitude d ** 3

where

d = displacement r’ r

-- | The electric field produced by a charge distribution.

-- This is the simplest way to find the electric field, because it

-- works for any charge distribution (point, line, surface, volume, or combination).

eField :: ChargeDistribution -> VectorField

eField (PointCharge q r’) = eFieldFromPointCharge q r’

eField (LineCharge lam c) = eFieldFromLineCharge lam c

eField (SurfaceCharge sig s) = eFieldFromSurfaceCharge sig s

eField (VolumeCharge rho v) = eFieldFromVolumeCharge rho v

eField (MultipleCharges cds) = addVectorFields $ map eField cds

-- Electric Flux --

-- | The electric flux through a surface produced by a charge distribution.

electricFlux :: Surface -> ChargeDistribution -> Double

electricFlux surf dist = dottedSurfaceIntegral 200 200 (eField dist) surf

19.2. ELECTRIC FIELD 199

-- Electric Potential --

-- | Electric potential from electric field, given a position to be the zero

-- of electric potential.

electricPotentialFromField :: Position -- ^ position where electric potential is zero

-> VectorField -- ^ electric field

-> ScalarField -- ^ electric potential

electricPotentialFromField base ef r = -dottedLineIntegral 1000 ef (straightLine base r)

-- | Electric potential produced by a charge distribution.

-- The position where the electric potential is zero is taken to be infinity.

electricPotentialFromCharge :: ChargeDistribution -> ScalarField

electricPotentialFromCharge (PointCharge q r’) = ePotFromPointCharge q r’

electricPotentialFromCharge (LineCharge lam c) = ePotFromLineCharge lam c

electricPotentialFromCharge (SurfaceCharge sig s) = ePotFromSurfaceCharge sig s

electricPotentialFromCharge (VolumeCharge rho v) = ePotFromVolumeCharge rho v

electricPotentialFromCharge (MultipleCharges cds) = addScalarFields $ map electricPotentialFromCharge cds

ePotFromPointCharge

:: Charge -- ^ charge (in Coulombs)

-> Position -- ^ of point charge

-> ScalarField -- ^ electric potential

ePotFromPointCharge q r’ r

= (k * q) / magnitude d

where

k = 9e9 -- 1 / (4 * pi * epsilon0)

d = displacement r’ r

ePotFromLineCharge

:: ScalarField -- ^ linear charge density lambda

-> Curve -- ^ geometry of the line charge

-> ScalarField -- ^ electric potential

ePotFromLineCharge lambda c r

= k * scalarLineIntegral 1000 integrand c

where

k = 9e9 -- 1 / (4 * pi * epsilon0)

200 CHAPTER 19. ELECTRIC FIELD

integrand r’ = lambda r’ / magnitude d

where

d = displacement r’ r

ePotFromSurfaceCharge

:: ScalarField -- ^ surface charge density sigma

-> Surface -- ^ geometry of the surface charge

-> ScalarField -- ^ electric potential

ePotFromSurfaceCharge sigma s r

= k * scalarSurfaceIntegral 200 200 integrand s

where

k = 9e9 -- 1 / (4 * pi * epsilon0)

integrand r’ = sigma r’ / magnitude d

where

d = displacement r’ r

ePotFromVolumeCharge

:: ScalarField -- ^ volume charge density rho

-> Volume -- ^ geometry of the volume charge

-> ScalarField -- ^ electric potential

ePotFromVolumeCharge rho v r

= k * scalarVolumeIntegral 50 50 50 integrand v

where

k = 9e9 -- 1 / (4 * pi * epsilon0)

integrand r’ = rho r’ / magnitude d

where

d = displacement r’ r

eTest :: Vec

eTest = eField positiveStick (cart 0 0 1)

19.3. ELECTRIC FIELD PRODUCED BYA LINE SEGMENTOF CHARGE201

19.3 Electric Field produced by a Line Seg-

ment of Charge

Imagine a line segment of charge, with linear charge density λ. Let us place
this line segment on the x axis from x = −L/2 to x = L/2. We wish to find
the electric field produced by this line segment at some point r = x̂i + yĵ.

The electric field at point r = x̂i + yĵ is given by

E(x, y) =

∫ L/2

−L/2

1

4πε0

λdx′

[(x− x′)2 + y2]3/2

[
(x− x′)̂i + yĵ

]
.

You should be able to derive this expression. If it is not clear how this
expression comes about, you should look in an introductory physics textbook
or ask me.

To find the electric field, we will do numerical integration. We can use
the numerical integrator that we wrote in the last section.

Activity 19.1. Write a program to show the electric field produced by a line
segment of charge. You may restrict your attention to the xy plane. Plot the
electric field vectors that you calculate with numerical integration in red.

The electric field produced by a line segment of charge is an exactly
solvable problem in physics. Find the exact solution in an introductory
physics textbook. (Or do the integral above yourself, if you like.) Plot the
electric field vectors obtained from the exact solution in blue. If you have
a good numerical integrator, you should get good agreement between the
numerical (red) and exact (blue) electric field vectors.

To get started, you can download a module to make arrows, and a tem-
plate for the electric field project.

wget http://quantum.lvc.edu/walck/phy261/Arrow.hs

wget http://quantum.lvc.edu/walck/phy261/eFieldFromLineTemplate.hs

Note that the template is set up to show only one set of arrows (for example,
the exactly calculated arrows, but not the numerically integrated arrows).
You will need to extend it to display both sets of arrows.

202 CHAPTER 19. ELECTRIC FIELD

Chapter 20

Electric Current

Electric current is the flow or movement of electric charge.

20.1 Current Distributions

Electric current is the fundamental quantity responsible for magnetic effects
(although this took thousands of years to discover after magnetic phenomena
were first observed) and plays a key role in electromagnetic theory. The most
common way to think about current is charge flowing along a wire (a one-
dimensional path).

But current can also flow along a surface (two dimensional), or throughout
a volume (three-dimensional). Since charge must move through space in order
to have a current, we cannot have a point current (zero dimensional).

There are three types of current distributions that we use. First, there is
current flowing along a one-dimensional path such as a line or a curve.

The SI unit for current is the Ampere or Amp (A). An ampere of current
in a wire means that one Coulomb of charge is passing a fixed point on the
wire in each second. We typically use the symbol I for current.

Second, there is current flowing along a two-dimensional surface. In this
case, we speak of the surface current density K, meaning the current per
unit of cross-section length. The SI unit for surface current density is the
Ampere per meter (A/m). Finally, there is current flowing throughout a
three-dimensional volume. In this case, we speak of the volume current den-
sity J, meaning the current per unit of cross-sectional area. The SI unit
for volume current density is the Ampere per square meter (A/m2). These

203

204 CHAPTER 20. ELECTRIC CURRENT

Charge distribution Dimensionality Symbol SI unit
Point current 0 not possible
Current 1 I A
Surface current density 2 K A/m
Volume current density 3 J A/m2

Table 20.1: Current distributions

current distributions are summarized in Table 20.1.
Let’s start coding. I like to turn warnings on so that the compiler will

tell me when I’m doing something I may not have intended.

{-# OPTIONS_GHC -Wall #-}

Let’s give the code in this chapter a module name, in case we want to
import it later for use with some other code.

module Current where

We will use the type Position that we defined in the module CoordinateSystems
in chapter 16, so we import that at the beginning of the Haskell code file.

import CoordinateSystems

import Physics.Learn.CarrotVec

(magnitude

, (*^)

, (^/)

, (><)

)

import Physics.Learn.Position

(VectorField

, displacement

, addFields

)

import Physics.Learn.Curve

20.2. A TYPE FOR CURRENT DISTRIBUTION 205

(Curve(..)

, crossedLineIntegral

)

import Physics.Learn.Surface

(Surface(..)

, surfaceIntegral

, dottedSurfaceIntegral

)

import Physics.Learn.Volume

(Volume(..)

, volumeIntegral

)

Now that we are talking about current, I am going to define a type syn-
onym for current.

type Current = R

This is entirely analogous to the type synonym we made for Charge. It is
simple, because we want current to be just a number, but because Current,
Charge, and R are really all the same under the hood, the compiler will not
be able to help us from mistakenly using a Charge where a Current should
go or vice versa.

20.2 A type for current distribution

-- | A current distribution is a line current

-- (current through a wire), a surface current,

-- a volume current, or a combination of these.

-- The ’VectorField’ describes a surface current

-- density or a volume current density.

data CurrentDistribution

= LineCurrent Current Curve

206 CHAPTER 20. ELECTRIC CURRENT

| SurfaceCurrent VectorField Surface

| VolumeCurrent VectorField Volume

| MultipleCurrents [CurrentDistribution]

20.3 Total current

I =

∫
J · da

Chapter 21

Magnetic Field

A simple magnetic effect is that two parallel wires carrying current in the
same direction will attract each other. In fact, the SI system of units defines
the Ampere to be that current which, when maintained in two parallel wires
of infinite length, one meter apart, will produce an attractive force of 2 ×
10−7 N per meter of wire length. The unit of current is defined in terms of
its magnetic effect.

In the 1800s, Faraday and Maxwell discovered a new way to think about
electric (and magnetic) phenomena, a way that forms the basis for today’s
electromagnetic theory. In this 19th century view, one current does not
directly apply a force to another current. Instead, one current creates a
magnetic field, and the magnetic field applies a force to the second current,
as in Figure 21.1.

Current

1

creates Magnetic

Field

exerts

force on

Current

2

Figure 21.1: Conceptual diagram of the role of the magnetic field when two
currents are present

207

208 CHAPTER 21. MAGNETIC FIELD

21.1 Magnetic Field of a Circular Current

Loop

One of the simplest and most natural ways to produce a magnetic field is
with a circular loop of current. A circular loop of current is also a nice
model of a magnetic dipole, which is a fundamental source of magnetic field.
Surprisingly, there is no analytical solution for the magnetic field produced
by a circular current loop. However, we can get a good approximate solution
using numerical integration.

Consider a circular loop in the xz plane, centered at the origin, with
radius R. This loop carries a current I in a counter-clockwise direction when
viewed from the positive y axis.

Question 21.1. Use the Biot-Savart law to come up with an integral that
gives the magnetic field at a point r = x̂i + yĵ. Feel free to check this result
with me before proceeding.

Activity 21.1. Write a program to show the magnetic field produced by
a circular current loop. You may restrict your attention to calculating the
magnetic field at points in the xy plane.

You will need to make some design decisions, such as how to scale the
magnetic field vectors and at which points to plot the magnetic field.

Chapter 22

Motion of a Charged Particle

Maxwell’s 1865 insight into the theory of electricity and magnetism was that
electric and magnetic fields were actors on the stage of physics with the same
stature as particles.

One of the important ways that
Electric and magnetic fields produce forces on a charged particle. The

force on a particle with charge q and velocity v in an electric field E and a
magnetic field B is given by the Lorentz force law.

F = q(E + v ×B)

External means produced by other charges and currents.
In some ways, this is the easier side of electromagnetic theory.

{-# OPTIONS_GHC -Wall #-}

module Main where

import Physics.Learn

import Vis

import SpatialMath

(Euler(..)

)

drawFunction :: SimpleState -> VisObject Double

drawFunction (_t,r,_v)

209

210 CHAPTER 22. MOTION OF A CHARGED PARTICLE

= RotEulerDeg (Euler 270 0 0) $ RotEulerDeg (Euler 0 180 0) $

VisObjects [Axes (0.5, 15)

, Trans (v3FromPos r) (Sphere 0.1 Solid red)

]

statePropagationFunction :: Float -> SimpleState -> SimpleState

statePropagationFunction t’ (t,r,v) = rungeKutta4 newton2 (realToFrac t’ - t) (t,r,v)

-- Newton’s Second Law

newton2 :: SimpleState -> Diff SimpleState

newton2 (t,r,v) = (1,v,force (t,r,v) ^/ m)

-- Lorentz Force Law

force :: SimpleState -> Vec

force (_t,r,v) = q *^ (electricField r ^+^ v >< magneticField r)

myOptions :: Options

myOptions = defaultOpts {optWindowName = "Particle Experiencing Electromagnetic Force"}

main :: IO ()

main = simulate

myOptions

0.01

(0,initialPosition,initialVelocity)

drawFunction

statePropagationFunction

-- particle mass

m :: Double

m = 1

-- particle charge

q :: Double

q = 1

-- Electric Field

electricField :: VectorField

211

electricField r = vec 0 2 0

where

(x,y,z) = cartesianCoordinates r

-- Magnetic Field

magneticField :: VectorField

magneticField r = vec 0 0 4

where

(x,y,z) = cartesianCoordinates r

-- Initial displacement

initialPosition :: Position

initialPosition = cart 0 0 0

-- Initial velocity

initialVelocity :: Vec

initialVelocity = vec 0 0 0

212 CHAPTER 22. MOTION OF A CHARGED PARTICLE

Appendix A

Color Summary

Entity Color Example
number black 4.2

character black ’H’

string grey "Haskell"

constant name black e

function name black square

anonymous function black \x -> x*x

data constructor black True

comment orange -- a comment

long comment orange {- a long comment -}
type blue Double -> Double

type variable blue a

type constructor blue Maybe

kind red * -> *

keyword bright purple if

type class green Num

module name light brown Graphics.Gnuplot.Simple

pragma pink {-# OPTIONS_GHC -Wall #-}

213

214 APPENDIX A. COLOR SUMMARY

Appendix B

A Type for Vectors

This module defines a type Vec for three-dimensional vectors, along with
associated vector functions such as vector addition and scalar multiplication.
This module is simple in the sense that the operations on vectors all have
simple, concrete types, without the need for type classes. This makes us-
ing and reasoning about vector operations easier for a person just learning
Haskell.

{-# OPTIONS_GHC -Wall #-}

module SimpleVec

(Vec(..)

, R

, vec

, (^+^)

, (^-^)

, (*^)

, (^*)

, (^/)

, (<.>)

, (><)

, magnitude

, zeroV

, negateV

, sumV

215

216 APPENDIX B. A TYPE FOR VECTORS

, iHat

, jHat

, kHat

)

where

infixl 6 ^+^

infixl 6 ^-^

infixl 7 *^

infixl 7 ^*

infixl 7 ^/

infixl 7 <.>

infixl 7 ><

type R = Double

-- | A type for vectors.

data Vec = Vec { xComp :: R -- ^ x component

, yComp :: R -- ^ y component

, zComp :: R -- ^ z component

} deriving (Eq)

instance Show Vec where

show (Vec x y z) = "vec " ++ showDouble x ++ " "

++ showDouble y ++ " "

++ showDouble z

showDouble :: R -> String

showDouble x

| x < 0 = "(" ++ show x ++ ")"

| otherwise = show x

-- | Form a vector by giving its x, y, and z components.

vec :: R -- ^ x component

-> R -- ^ y component

-> R -- ^ z component

-> Vec

217

vec = Vec

Here are unit vectors in the x, y, and z directions.

iHat :: Vec

iHat = vec 1 0 0

jHat :: Vec

jHat = vec 0 1 0

kHat :: Vec

kHat = vec 0 0 1

-- | The zero vector.

zeroV :: Vec

zeroV = vec 0 0 0

-- | The additive inverse of a vector.

negateV :: Vec -> Vec

negateV (Vec ax ay az) = Vec (-ax) (-ay) (-az)

Vector addition and subtraction are just the addition and subtraction of
the corresponding Cartesian components.

(^+^) :: Vec -> Vec -> Vec

Vec ax ay az ^+^ Vec bx by bz = Vec (ax+bx) (ay+by) (az+bz)

(^-^) :: Vec -> Vec -> Vec

Vec ax ay az ^-^ Vec bx by bz = Vec (ax-bx) (ay-by) (az-bz)

It is useful to have a function that adds a whole list of vectors. We will
use this function when we do numeric integrals.

218 APPENDIX B. A TYPE FOR VECTORS

sumV :: [Vec] -> Vec

sumV = foldr (^+^) zeroV

The function foldr is defined in the prelude. The definition of sumV is
written in point-free style, which means that it is short for sumV vs = foldr (^+^) zeroV vs.
Roughly speaking, foldr takes a binary operator ((^+^) in this case), an ini-
tial value, and a list of values, and ”folds” the initial value and an element
from the list into an accumulated value, then continues to fold the accumu-
late value with the next element of this to form a new accumulated value,
until the list is gone and the final accumulated value is returned. It is a fairly
powerful function, but here it is used to just keep adding the members of the
list until there are no more.

There are three types of multiplication in which three-dimensional vectors
participate. The first is scalar multiplication, in which we multiply a number
by a vector or a vector by a number. We use (*^) and (^*) for scalar
multiplication. The first takes a number on the left and a vector on the right.
The second takes a vector on the left and a number on the right. The vector
always goes next to the carrot symbol. The second vector multiplication
is the dot product. We use (<.>) for the dot product. The third vector
multiplication is the cross product. We use (><) for the cross product,
because >< looks a bit like a cross.

(*^) :: R -> Vec -> Vec

c *^ Vec ax ay az = Vec (c*ax) (c*ay) (c*az)

(^*) :: Vec -> R -> Vec

Vec ax ay az ^* c = Vec (c*ax) (c*ay) (c*az)

(<.>) :: Vec -> Vec -> R

Vec ax ay az <.> Vec bx by bz = ax*bx + ay*by + az*bz

(><) :: Vec -> Vec -> Vec

Vec ax ay az >< Vec bx by bz

= Vec (ay*bz - az*by) (az*bx - ax*bz) (ax*by - ay*bx)

We can divide a vector by a scalar.

219

(^/) :: Vec -> R -> Vec

Vec ax ay az ^/ c = Vec (ax/c) (ay/c) (az/c)

We can take the magnitude of a vector.

magnitude :: Vec -> R

magnitude v = sqrt(v <.> v)

220 APPENDIX B. A TYPE FOR VECTORS

Appendix C

Vector Integrals

C.1 A table of vector integrals

scalar line integral
∫
f dl 1D

vector line integral
∫

F dl 1D
dotted line integral

∫
F · dl 1D

scalar surface integral
∫
f da 2D

vector surface integral
∫

F da 2D
flux integral

∫
F · da 2D

scalar volume integral
∫
f dv 3D

vector volume integral
∫

F dv 3D

C.2 Applications of the integrals

C.2.1 Scalar line integral

The scalar line integral requires a scalar field f and a path P .∫
P

f dl

C.2.1.1 Finding total charge of a line charge

The path P is along the line charge.

Q =

∫
P

λ(r′) dl′

221

222 APPENDIX C. VECTOR INTEGRALS

C.2.1.2 Finding electric potential of a line charge

The path P is along the line charge.

φ(r) =
1

4πε0

∫
P

λ(r′)

|r− r′|
dl′

C.2.2 Vector line integral

The vector line integral requires a vector field F and a path P .∫
P

F dl

C.2.2.1 Finding electric field of a line charge

The path P is along the line charge.

E(r) =
1

4πε0

∫
P

r− r′

|r− r′|3
λ(r′) dl′

C.2.3 Dotted line integral

The dotted line integral requires a vector field F and a path P .∫
P

F · dl

C.2.3.1 Finding electric potential from electric field

The path P begins at a point where the electric potential is zero and ends
at the field point r.

φ(r) = −
∫
P

E(r′) · dl′

In electrostatics, this integral is path independent, so we could write the
integral using only the endpoints of the path P . Let a0 be a point we choose
for the electric potential to be zero.

φ(r) = −
∫ r

a0

E(r′) · dl′

A nice property of this latter form is that we see how the field point r on the
left is related to the field point r on the right. We are finding the electric
potential at the end point r of the path P .

C.2. APPLICATIONS OF THE INTEGRALS 223

C.2.4 Scalar surface integral

The scalar surface integral requires a scalar field f and a surface S. The
surface does not need an orientation.∫

S

f da

C.2.4.1 Finding total charge of a surface charge

The surface S is over the surface charge.

Q =

∫
S

σ(r′) da′

C.2.4.2 Finding electric potential of a surface charge

The surface S is over the surface charge.

φ(r) =
1

4πε0

∫
S

σ(r′)

|r− r′|
da′

C.2.5 Vector surface integral

The vector surface integral requires a vector field F and a surface S. The
surface does not need an orientation.∫

S

F da

C.2.5.1 Finding electric field of a surface charge

The surface S is over the surface charge.

E(r) =
1

4πε0

∫
S

r− r′

|r− r′|3
σ(r′) da′

C.2.6 Flux integral

The flux integral requires a vector field F and an oriented surface S.∫
S

F · da

224 APPENDIX C. VECTOR INTEGRALS

C.2.6.1 Finding electric flux from electric field

The surface S is the surface through which to find the electric flux. The
orientation points perpendicular to the surface, so that electric field in that
direction would count as positive electric flux.

ΦE =

∫
S

E(r′) · da′

C.2.7 Scalar volume integral

The scalar volume integral requires a scalar field f and a volume V .∫
V

f dv

C.2.7.1 Finding total charge of a volume charge

The volume V is over the volume charge.

Q =

∫
V

ρ(r′) dv′

C.2.7.2 Finding electric potential of a volume charge

The volume V is over the volume charge.

φ(r) =
1

4πε0

∫
V

ρ(r′)

|r− r′|
dv′

C.2.8 Vector volume integral

The vector volume integral requires a vector field F and a volume V .∫
V

F dv

C.2.8.1 Finding electric field of a volume charge

The volume V is over the volume charge.

E(r) =
1

4πε0

∫
V

r− r′

|r− r′|3
ρ(r′) dv′

C.3. CODE FOR INTEGRALS 225

C.3 Code for integrals

As usual, we will construct a Haskell module in this chapter, and we will start
by turning on warnings, giving our module the name VectorIntegrals, and
importing some functions that we will need later in the chapter.

{-# OPTIONS_GHC -Wall #-}

module VectorIntegrals where

import CoordinateSystems

(R

, Position

, ScalarField

, VectorField

, cartesianCoordinates

, cart

, displacement

)

import Geometry

(Curve(..)

, Surface(..)

, Volume(..)

)

import SimpleVec

(Vec

, magnitude

, sumV

, (^+^)

, (^*)

, (^/)

, (<.>)

, (><)

)

Above I have explicitly listed the types and functions I want to import
from other modules to use here. When we include the type Curve followed
by two dots (..) in parentheses, it means that we want to import the Curve

226 APPENDIX C. VECTOR INTEGRALS

type as well as all of the data constructors for Curve (of which there is only
one, called Curve).

C.3.1 Scalar line integral

The scalar line integral requires a scalar field f and a path or curve (I use
the words path and curve interchangeably) P .∫

P

f dl

We get a scalar as a result. Our mission, then, is to write a function that looks
something like the following, with undefined replaced by whatever the scalar
line integral really means. (I have put a 1 at the end of scalarLineIntegral
because I think the type will actually change a little bit as we become clear
about what we want the function to do for us.)

scalarLineIntegral1 :: ScalarField -> Curve -> R

scalarLineIntegral1 = undefined

What does the scalar line integral mean? What do we want this code to
do for us? Let’s take a look at these questions by way of an example. For
our scalar field, let’s choose f(x, y, z) = x2 + y2. For our curve, let’s choose
the parabola

t 7→ (t, t2, 0)

in which 0 ≤ t ≤ 2. Here are our example scalar field and curve in Haskell.

fsf :: ScalarField

fsf p = let (x,y,_) = cartesianCoordinates p

in x*x + y*y

parabola :: Curve

parabola = Curve (\t -> cart t (t*t) 0) 0 2

A line integral is adding something up along a curve. When we numeri-
cally integrate, we take a continuous thing (the original integral) and convert
it into a discrete thing (a sum). In the case of a line integral, we divide our

C.3. CODE FOR INTEGRALS 227

curve into some finite number of sections or segments. For our current ex-
ample and our pictures, we will choose N = 4 segments. This will make it
easier on the brain to understand what we are doing, and easier to read the
pictures. (If we want the numerical integral to be a reasonable approxima-
tion to the original continous integral, we should probably choose N = 100
or N = 1000.)

The range of parameters for our curve is the closed interval [0, 2]. We
will break this parameter space into four equal parts. The four parameter
sections are the intervals

[0.0, 0.5], [0.5, 1.0], [1.0, 1.5], [1.5, 2.0].

We identify the points at the beginning and end of each interval. There will
be N + 1 = 5 such points at t = 0.0, 0.5, 1.0, 1.5, 2.0. Our curve, divided into
four sections, is shown in Figure C.1.

Figure C.1 shows the end points of our curve when we divide the curve
into four segments. How can we find these end points for any curve with any
N? Here is a function to do that.

sectionEndPoints :: Int -- ^ number of intervals

-> Curve

-> [Position] -- ^ list of endpoints

sectionEndPoints n (Curve g a b)

= let dt = (b - a) / fromIntegral n

in [g t | t <- [a, a + dt .. b]]

We give the function sectionEndPoints a number of intervals N (called
n in the code) along with a curve, and the function gives us back a list of
positions of the N + 1 end points. Th function works by first finding out
the parameter distance dt between adjacent end points. For this, we just
need to divide the entire parameter region (b - a) by N . Since n has type
Int and b - a has type R, we need the fromIntegral function to convert n
to type R before we do the division. The list comprehension in the last line
applies the curve function g to each parameter in the full list of parameters
that starts with a, increases by dt, and ends at b.

Let’s confirm that GHCi gives the correct value for l3 in Figure C.1.

GHCi :l VectorIntegrals.lhs

228 APPENDIX C. VECTOR INTEGRALS

0 0.5 1 1.5 2

0

1

2

3

4

0.0000
0.3125

2.0000

7.3215

20.0000

l0
l1

l2

l3

l4

x

y
A Parametrized Curve

Parameter t End point l Scalar field value
t0 = 0.0 l0 = (0.00, 0.00, 0.00) f(l0) = 0.0000
t1 = 0.5 l1 = (0.50, 0.25, 0.00) f(l1) = 0.3125
t2 = 1.0 l2 = (1.00, 1.00, 0.00) f(l2) = 2.0000
t3 = 1.5 l3 = (1.50, 2.25, 0.00) f(l3) = 7.3215
t4 = 2.0 l4 = (2.00, 4.00, 0.00) f(l4) = 20.0000

Figure C.1: The parametrized curve t 7→ (t, t2, 0) divided into N = 4 equal
sections. The values of the scalar field f(x, y, z) = x2 + y2 are shown at each
end point.

C.3. CODE FOR INTEGRALS 229

GHCi
sectionEndPoints 4 parabola !! 3

 Cart 1.5 2.25 0.0

The other information shown in Figure C.1 is the value of the scalar field
f at the curve end points. How can we find these values in general?

fVals :: Int -- ^ number of intervals

-> ScalarField

-> Curve

-> [R]

fVals n f c = [f pt | pt <- sectionEndPoints n c]

The fVals function takes a number of intervals, a scalar field, and a curve,
and produces a list of values that the scalar field takes at each of the N + 1
end points. We see that the function uses a list comprehension to apply the
scalar field f to each end point in the list formed with the sectionEndPoints
function.

GHCi
fVals 4 fsf parabola

 [0.0,0.3125,2.0,7.3125,20.0]

The numerical approximation we make is∫
P

f dl ≈
N∑
j=1

fj∆lj, (C.1)

where ∆lj is the length of a section of our curve P and fj is the value of the
scalar field f on or near that section. After we compute the sum, we are left
with a scalar value for the scalar line integral.

We have some choices to make in equation C.1 before we have really been
precise about what the computer is supposed to do.

(a) We must decide how to approximate the length ∆lj of each section of
the curve.

(b) We must decide what value fj of the scalar field to use for each section
of the curve.

We then multiply each length by the corresponding value, and add it up.

230 APPENDIX C. VECTOR INTEGRALS

0 0.5 1 1.5 2

0

1

2

3

4

∆l1

∆l2

∆l3

∆l4

x

y

Vector Segments for a Parametrized Curve

Vector segment ∆l Segment length ∆l
∆l1 = (0.50, 0.25, 0.00) ∆l1 = 0.5590
∆l2 = (0.50, 0.75, 0.00) ∆l2 = 0.9014
∆l3 = (0.50, 1.25, 0.00) ∆l3 = 1.3463
∆l4 = (0.50, 1.75, 0.00) ∆l4 = 1.8200

Figure C.2: The vector segments for the curve t 7→ (t, t2, 0) when N = 4.

C.3. CODE FOR INTEGRALS 231

How shall we approximate the length of a curve section? There are differ-
ent options, but one simple way is to use the length of the vector that joins
the endpoints of a curve section. See Figure C.2.

We need a general purpose way to find the vector segments listed in
Figure C.2.

dlVecs :: Int -- ^ number of intervals

-> Curve

-> [Vec] -- ^ list of dl vectors

dlVecs n c = let pts = sectionEndPoints n c

in zipWith displacement pts (tail pts)

This function takes a numberN of intervals along with a curve and returns
a list of N vector segments along the curve. The function works by first
finding the list of N + 1 section end points and storing them in the local list
variable pts. The trick in the second line is to use zipWith displacement

to find the displacement from the first item in pts to the first item in tail

pts, the displacement from the second item in pts to the second item in
tail pts, and so on. The list pts has N + 1 items; the list tail pts has N
items. When using zip or zipWith, the resulting list has the length of the
shorter list, so the final list of vector segments has length N .

Let’s confirm that GHCi gives the correct value for ∆l4 in Figure C.2.

GHCi
dlVecs 4 parabola !! 3

 vec 0.5 1.75 0.0

Note that we ask for element 3, which is really the fourth element, since
we start counting our elements from zero. The length of this vector can be
obtained with magnitude.

GHCi
magnitude (dlVecs 4 parabola !! 3)

 1.8200274723201295

We are almost there. For our example scalar line integral, we have∫
P

f dl ≈
N∑
j=1

fj∆lj

= f1∆l1 + f2∆l2 + f3∆l3 + f4∆l4

= 0.5590f1 + 0.9014f2 + 1.3463f3 + 1.8200f4

232 APPENDIX C. VECTOR INTEGRALS

We must now make decision (b) and figure out how to get values fj of the
scalar field on or near each curve segment.

We have the five segment end points l0, . . . , l4 which we used to get values
of the scalar field. For example, when we evaluate the scalar field f (called
fsf in the Haskell code) at the end point l3 = (1.50, 2.25, 0.00),

GHCi
fsf (cart 1.50 2.25 0.00)

 7.3125

we get a number. The trouble in using this number for f3, say, is that the
number doesn’t really go with segment 3; it goes with the point between
segment 3 and segment 4.

(1) We could find points in space for parameters t = 0.25, 0.75, 1.25, 1.75
and then evaluate the scalar field at these space points. These points are
on the curve, and near the middle of the segments, so this is reasonable.

(2) We could evaluate the 5 points we already have, and average the values.

We will go with option (2). The averaging can be done with the following
function.

averageVals :: [R] -> [R]

averageVals vs = [(x + y) / 2 | (x,y) <- zip vs (tail vs)]

We are now ready to give our Haskell expression for a scalar line integral.

scalarLineIntegral

:: Int -- ^ number of intervals

-> ScalarField -- ^ scalar field

-> Curve -- ^ curve to integrate over

-> R -- ^ scalar result

scalarLineIntegral n f c

= sum $ zipWith (*) segmentVals (map magnitude dls)

where

segmentVals = averageVals (fVals n f c)

dls = dlVecs n c

C.3. CODE FOR INTEGRALS 233

GHCi
scalarLineIntegral 4 fsf parabola

 32.25299464811167

GHCi
scalarLineIntegral 100 fsf parabola

 30.778970402732043

GHCi
scalarLineIntegral 1000 fsf parabola

 30.776568015034147

C.3.2 Vector line integral

vectorLineIntegral

:: Int -- ^ number of intervals

-> VectorField -- ^ vector field

-> Curve -- ^ curve to integrate over

-> Vec -- ^ vector result

vectorLineIntegral n vf c

= sumV $ zipWith (^*) segmentVals (map magnitude dls)

where

segmentVals = averageVFVals (vfVals n vf c)

dls = dlVecs n c

vfVals :: Int -- ^ number of intervals

-> VectorField

-> Curve

-> [Vec]

vfVals n vf c = [vf pt | pt <- sectionEndPoints n c]

averageVFVals :: [Vec] -> [Vec]

averageVFVals vs = [(x ^+^ y) ^/ 2 | (x,y) <- zip vs (tail vs)]

C.3.3 Dotted line integral

dottedLineIntegral

:: Int -- ^ number of intervals

-> VectorField -- ^ vector field

234 APPENDIX C. VECTOR INTEGRALS

-> Curve -- ^ curve to integrate over

-> R -- ^ scalar result

dottedLineIntegral n vf c

= sum $ zipWith (<.>) segmentVals dls

where

segmentVals = averageVFVals (vfVals n vf c)

dls = dlVecs n c

C.3.3.1 Comparison of line integrals

All three of our line integrals take a curve and a number of intervals as inputs.
Beyond that, the types differ. The following table gives a comparison of the
differences.

f or F dl or dl
Line integral values combinator values Output
scalarLineIntegral R (*) R R

vectorLineIntegral Vec (^*) R Vec

dottedLineIntegral Vec (<.>) Vec R

C.3.4 Scalar surface integral

linSpaced :: Int -> R -> R -> [R]

linSpaced n a b

| abs (a - b) < tolerance = [(a + b)/2]

| otherwise = let dx = (b - a) / fromIntegral n

in [a,a+dx..b]

tolerance :: R

tolerance = 1e-10

ave :: R -> R -> R

ave v1 v2 = (v1 + v2) / 2

aveV :: Vec -> Vec -> Vec

aveV v1 v2 = (v1 ^+^ v2) ^/ 2

C.3. CODE FOR INTEGRALS 235

scalarSurfaceIntegral :: Int -- ^ number of intervals for first parameter, s

-> Int -- ^ number of intervals for second parameter, t

-> ScalarField -- ^ the scalar or vector field to integrate

-> Surface -- ^ the surface over which to integrate

-> R -- ^ the resulting scalar or vector

scalarSurfaceIntegral n1 n2 field (Surface f s_l s_u t_l t_u)

= sum $ map sum $ zipWith (zipWith (*)) aveVals (map (map magnitude) areas)

where

pts = [[f (s,t) | t <- linSpaced n2 (t_l s) (t_u s)] | s <- linSpaced n1 s_l s_u]

areas = zipWith (zipWith (><)) dus dvs

dus = zipWith (zipWith displacement) pts (tail pts)

dvs = map (\row -> zipWith displacement row (tail row)) pts

vals = map (map field) pts

halfAveVals = map (\row -> zipWith ave (tail row) row) vals

aveVals = zipWith (zipWith ave) (tail halfAveVals) halfAveVals

C.3.5 Vector surface integral

vectorSurfaceIntegral :: Int -- ^ number of intervals for first parameter, s

-> Int -- ^ number of intervals for second parameter, t

-> VectorField -- ^ the scalar or vector field to integrate

-> Surface -- ^ the surface over which to integrate

-> Vec -- ^ the resulting scalar or vector

vectorSurfaceIntegral n1 n2 field (Surface f s_l s_u t_l t_u)

= sumV $ map sumV $ zipWith (zipWith (^*)) aveVals (map (map magnitude) areas)

where

pts = [[f (s,t) | t <- linSpaced n2 (t_l s) (t_u s)] | s <- linSpaced n1 s_l s_u]

areas = zipWith (zipWith (><)) dus dvs

dus = zipWith (zipWith displacement) pts (tail pts)

dvs = map (\row -> zipWith displacement row (tail row)) pts

vals = map (map field) pts

halfAveVals = map (\row -> zipWith aveV (tail row) row) vals

aveVals = zipWith (zipWith aveV) (tail halfAveVals) halfAveVals

236 APPENDIX C. VECTOR INTEGRALS

C.3.6 Flux integral

dottedSurfaceIntegral :: Int -- ^ number of intervals for first parameter, s

-> Int -- ^ number of intervals for second parameter, t

-> VectorField -- ^ the vector field to integrate

-> Surface -- ^ the surface over which to integrate

-> R -- ^ the resulting scalar

dottedSurfaceIntegral n1 n2 vf (Surface f s_l s_u t_l t_u)

= sum $ map sum $ zipWith (zipWith (<.>)) aveVals areas

where

pts = [[f (s,t) | t <- linSpaced n2 (t_l s) (t_u s)] | s <- linSpaced n1 s_l s_u]

areas = zipWith (zipWith (><)) dus dvs

dus = zipWith (zipWith displacement) pts (tail pts)

dvs = map (\row -> zipWith displacement row (tail row)) pts

vals = map (map vf) pts

halfAveVals = map (\row -> zipWith aveV (tail row) row) vals

aveVals = zipWith (zipWith aveV) (tail halfAveVals) halfAveVals

C.3.7 Scalar volume integral

zipCubeWith :: (a -> b -> c) -> [[[a]]] -> [[[b]]] -> [[[c]]]

zipCubeWith = zipWith . zipWith . zipWith

zipSub3 :: [[[Position]]] -> [[[Position]]] -> [[[Vec]]]

zipSub3 = zipCubeWith displacement

zipAve3 :: [[[R]]] -> [[[R]]] -> [[[R]]]

zipAve3 = zipCubeWith ave

zipAve3V :: [[[Vec]]] -> [[[Vec]]] -> [[[Vec]]]

zipAve3V = zipCubeWith aveV

shift1 :: [a] -> ([a],[a])

shift1 pts = (pts, tail pts)

shift2 :: [[a]] -> ([[a]],[[a]])

C.3. CODE FOR INTEGRALS 237

shift2 pts2d = (pts2d, map tail pts2d)

shift3 :: [[[a]]] -> ([[[a]]],[[[a]]])

shift3 pts3d = (pts3d, map (map tail) pts3d)

scalarVolumeIntegral :: Int -- ^ number of intervals for first parameter (s)

-> Int -- ^ number of intervals for second parameter (t)

-> Int -- ^ number of intervals for third parameter (u)

-> ScalarField -- ^ scalar or vector field

-> Volume -- ^ the volume

-> R -- ^ scalar or vector result

scalarVolumeIntegral n1 n2 n3 field (Volume f s_l s_u t_l t_u u_l u_u)

= sum $ map sum $ map (map sum) (zipCubeWith (*) aveVals volumes)

where

pts = [[[f (s,t,u) | u <- linSpaced n3 (u_l s t) (u_u s t)] | t <- linSpaced n2 (t_l s) (t_u s)] | s <- linSpaced n1 s_l s_u]

volumes = zipWith3 (zipWith3 (zipWith3 (\du dv dw -> du <.> (dv >< dw)))) dus dvs dws

dus = uncurry zipSub3 (shift1 pts)

dvs = uncurry zipSub3 (shift2 pts)

dws = uncurry zipSub3 (shift3 pts)

vals = map (map (map field)) pts

aveVals = ((uncurry zipAve3 . shift1) . (uncurry zipAve3 . shift2) . (uncurry zipAve3 . shift3)) vals

C.3.8 Vector volume integral

vectorVolumeIntegral :: Int -- ^ number of intervals for first parameter (s)

-> Int -- ^ number of intervals for second parameter (t)

-> Int -- ^ number of intervals for third parameter (u)

-> VectorField -- ^ scalar or vector field

-> Volume -- ^ the volume

-> Vec -- ^ scalar or vector result

vectorVolumeIntegral n1 n2 n3 field (Volume f s_l s_u t_l t_u u_l u_u)

= sumV $ map sumV $ map (map sumV) (zipCubeWith (^*) aveVals volumes)

where

pts = [[[f (s,t,u) | u <- linSpaced n3 (u_l s t) (u_u s t)] | t <- linSpaced n2 (t_l s) (t_u s)] | s <- linSpaced n1 s_l s_u]

volumes = zipWith3 (zipWith3 (zipWith3 (\du dv dw -> du <.> (dv >< dw)))) dus dvs dws

238 APPENDIX C. VECTOR INTEGRALS

dus = uncurry zipSub3 (shift1 pts)

dvs = uncurry zipSub3 (shift2 pts)

dws = uncurry zipSub3 (shift3 pts)

vals = map (map (map field)) pts

aveVals = ((uncurry zipAve3V . shift1) . (uncurry zipAve3V . shift2) . (uncurry zipAve3V . shift3)) vals

C.4 Fundamental theorems of calculus

C.4.1 Gradient theorem

The gradient theorem requires a scalar field f and a path P . Suppose the
path P starts at a and ends at b.∫

P

∇f · dl = f(b)− f(a)

The integral on the left is a dotted line integral.

C.4.2 Stokes’ theorem

Stokes’ theorem requires a vector field F and an oriented surface S. Let ∂S
be a (closed) path that forms the boundary of the surface S.∫

S

(∇× F) · da =

∫
∂S

F · dl

The integral on the left is a flux integral, and the integral on the right is a
dotted line integral.

C.4.3 Divergence theorem

The divergence theorem requires a vector field F and a volume V . Let ∂V
be the (closed) oriented surface that forms the boundary of the volume V .
The orientation is “outward”.∫

V

(∇ · F) dv =

∫
∂V

F · da

The integral on the left is a scalar volume integral, and the integral on the
right is a flux integral.

C.5. CALCULATION 239

C.5 Calculation

C.5.1 Line integrals

The key to evaluating line integrals, whether they be scalar line integrals,
vector line integrals, or dotted line integrals, is to find a single variable or
parameter in which to carry out the integration. In many cases, this sin-
gle parameter can be one of the coordinates in a Cartesion, cylindrical, or
spherical coordinate system.

C.5.1.1 Scalar line integrals

Example C.1. Find the scalar line integral
∫
P
f dl for the scalar field

f(x, y, z) = x2 + y2

over the path running along the parabola t 7→ (t, t2, 0) from t = 0 to t = 2.

Solution:

l(t) = (t, t2, 0)

f = x2 + y2 = t2 + t4

dl = (1, 2t, 0) dt

dl =
√

1 + 4t2 dt

∫
P

f dl =

∫ 2

0

(t2 + t4)
√

1 + 4t2 dt

=
11476

√
17− 21 asinh(4)

1536
= 30.7765

(Using Maxima to calculate the second line.) We got 30.78 from our numer-
ical integrals.

240 APPENDIX C. VECTOR INTEGRALS

C.5.1.2 Vector line integrals

Example C.2. Find the vector line integral
∫

F dl for the vector field

F(s, φ, z) = s2 cosφŝ + s2 sinφφ̂

over the closed path shown below.

x

y

R

Solution: The path is made up of three portions. Let P1 be the portion
that runs along the x axis. Let P2 be the portion that curves, and let P3 be
the portion that runs along the y axis. Denote by P the entire closed path.
The vector line integral over the entire path is the sum of the vector line
integrals over each portion.∫

P

F dl =

∫
P1

F dl +

∫
P2

F dl +

∫
P3

F dl

We will carry the integrals out in cylindrical coodinates. However, we
want to avoid having the unit vectors ŝ and φ̂ under the integral sign, because
these unit vectors change direction from place to place. Therefore, we will
rewrite the vector field F using Cartesian unit vectors x̂, ŷ, and ẑ, but keeping
the cylindrical coordinates s, φ, and z.

We can write the cylindrical coordinate unit vectors ŝ, φ̂, and ẑ in terms
of the Cartesian coordinate unit vectors x̂, ŷ, and ẑ as follows.

ŝ = cosφx̂ + sinφŷ

φ̂ = − sinφx̂ + cosφŷ

ẑ = ẑ

C.5. CALCULATION 241

The vector field F is the following.

F = s2 cosφŝ + s2 sinφφ̂

= s2 cosφ(cosφx̂ + sinφŷ) + s2 sinφ(− sinφx̂ + cosφŷ)

= s2 cos 2φx̂ + s2 sin 2φŷ

Here, we have used the following trigonometric identities.

cos 2θ = cos2 θ − sin2 θ

sin 2θ = 2 sin θ cos θ

For the first portion P1, we have dl = ds.∫
P1

F dl =

∫ R

0

(s2 cos 2φx̂ + s2 sin 2φŷ) ds

We want to get all variables in terms of s, since that is the one variable we
are integrating over. Along P1, we have φ = 0.∫

P1

F dl = x̂

∫ R

0

s2 ds =
R3

3
x̂

For the second portion P2, we have dl = s dφ.∫
P2

F dl =

∫ π/2

0

(s2 cos 2φx̂ + s2 sin 2φŷ)s dφ

Along P2, we have s = R.∫
P2

F dl = R3

∫ π/2

0

(cos 2φx̂ + sin 2φŷ) dφ

= R3x̂

∫ π/2

0

cos 2φ dφ+R3ŷ

∫ π/2

0

sin 2φ dφ

∫ π/2

0

cos 2φ dφ =

[
sin 2φ

2

]π/2
0

= 0

∫ π/2

0

sin 2φ dφ =

[
−cos 2φ

2

]π/2
0

=

[
cos 2φ

2

]0
π/2

=
1− (−1)

2
= 1

242 APPENDIX C. VECTOR INTEGRALS∫
P2

F dl = R3ŷ

For the third portion P3, we have dl = ds.∫
P3

F dl =

∫ 0

R

(s2 cos 2φx̂ + s2 sin 2φŷ) ds

This looks very much like the expression for the integral over the first portion
above, but it’s different in two ways. First, the limits on the integral are
different. For P3, we’re starting at s = R and going to s = 0. Second, the
value of φ is different. For P3, we have φ = π/2.∫

P3

F dl = −x̂

∫ 0

R

s2 ds =
R3

3
x̂

In total we have the following result.∫
P

F dl =
2

3
R3x̂ +R3ŷ

Note that the result of a vector line integral is a vector.

C.5.1.3 Dotted line integrals

Example C.3. Find the dotted line integral
∫

F · dl for the vector field

F(s, φ, z) = s2 cosφŝ + s2 sinφφ̂

over the closed path shown below.

x

y

R

C.5. CALCULATION 243

Solution: The path is made up of three portions. Let P1 be the portion
that runs along the x axis. Let P2 be the portion that curves, and let P3 be
the portion that runs along the y axis. Denote by P the entire closed path.
The dotted line integral over the entire path is the sum of the dotted line
integrals over each portion.∫

P

F · dl =

∫
P1

F · dl +

∫
P2

F · dl +

∫
P3

F · dl

We will carry the integrals out in cylindrical coodinates. For dl, we can
use the standard expression in cylindrical coordinates.

dl = dsŝ + s dφφ̂ + dzẑ

Now we can find an expression for F · dl.

F · dl = (s2 cosφŝ + s2 sinφφ̂) · (dsŝ + s dφφ̂ + dzẑ)

= s2 cosφ ds+ s3 sinφ dφ

Recall that for line integrals of all kinds, we want to express the integral
in terms of a single variable that we are integrating over. The expression
above is not yet in that form. We have three portions of the path that we
want to integrate over, and it will turn out that the variable we want for
our single variable of integration is different for the different portions. The
expression for F · dl will simplify in different ways for each portion of the
path.

For the first portion P1, we have φ = 0. This means that dφ = 0 and that
part of F · dl will go away. For P1, we have

F · dl = s2 ds.∫
P1

F · dl =

∫ R

0

s2 ds =
R3

3

For the second portion P2, we have s = R, ds = 0, and

F · dl = R3 sinφ dφ.∫
P2

F · dl =

∫ π/2

0

R3 sinφ dφ = R3

244 APPENDIX C. VECTOR INTEGRALS

For the third portion P3, we have φ = π/2, dφ = 0, and

F · dl = 0.∫
P3

F · dl = 0

In total we have the following result.∫
P

F · dl =
4

3
R3

Note that the result of a dotted line integral is a scalar.

C.5.2 Flux integrals

Example C.4. Find the flux integral for the vector field

F(r, θ, φ) = rr̂ + r sin θθ̂ + r sin θ cosφφ̂

through the region enclosed by a triangle in the xy plane with vertices at
(x, y, z) = (0, 0, 0), (x, y, z) = (2, 0, 0), and (x, y, z) = (2, 2, 0).

Solution: The flux integral is ∫
F · da

so the first order of business is to get an expression for da in terms of the
two variables we want to integrate over. The triangular region given suggests
that we want to use Cartesian coordinates and integrate over x and y. The
surface element da is a vector, so we need an orientation for the surface. The
orientation is always perpendicular to the surface, so it could be either ẑ or
−ẑ. An orientation was not given in the problem, so let’s choose ẑ for our
orientation.

da = dx dyẑ

Next, we want an expression for F · da in terms of the two variables we
want to integrate over. We notice that the vector field is given in spherical
coordinates and the surface is described with Cartesian coordinates. When
we take the dot product, we will have terms such as r̂ · ẑ showing up. Let’s

C.5. CALCULATION 245

figure these out in advance. Starting with expressions for the spherical unit
vectors in terms of the Cartesian unit vectors,

r̂ =
xx̂ + yŷ + zẑ√
x2 + y2 + z2

= sin θ cosφx̂ + sin θ sinφŷ + cos θẑ

θ̂ = cos θ cosφx̂ + cos θ sinφŷ − sin θẑ

φ̂ = − sinφx̂ + cosφŷ

we take the dot product of each of these equations with ẑ to find

r̂ · ẑ = cos θ

θ̂ · ẑ = − sin θ

φ̂ · ẑ = 0.

Now we write an expression for F · da.

F · da = (rr̂ · ẑ + r sin θθ̂ · ẑ + r sin θ cosφφ̂ · ẑ) dx dy

= (r cos θ − r sin2 θ) dx dy

=

(
z − x2 + y2√

x2 + y2 + z2

)
dx dy

= −
√
x2 + y2 dx dy

In the last step, we used the fact that z = 0 for the surface we are using.
Next, we need limits for our integral.∫

F · da = −
∫ 2

0

∫ x

0

√
x2 + y2 dy dx

The inner integral goes from the line y = 0 to the line y = x. The outer
integral goes from the point x = 0 to the point x = 2.

All that remains is to evaluate the double integral. The inner integral is∫ x

0

√
x2 + y2 dy

246 APPENDIX C. VECTOR INTEGRALS

This is an integral over y with x held constant. From Gradshteyn and Ryzhik,
5th edition, integral 2.271.3 (page 105) I find this integral.∫ √

a+ x2 dx =
1

2
x
√
a+ x2 +

1

2
a ln(x+

√
a+ x2)

For a, we’ll substitute x2, and for x we’ll substitute y.∫ x

0

√
x2 + y2 dy =

[
1

2
y
√
x2 + y2 +

1

2
x2 ln(y +

√
x2 + y2)

]y=x
y=0

=

[
1

2
x
√
x2 + x2 +

1

2
x2 ln(x+

√
x2 + x2)

]
−
[

1

2
x2 ln(

√
x2)

]
=

√
2

2
x2 +

1

2
x2 ln(x+

√
2x)− 1

2
x2 lnx

=

√
2

2
x2 +

1

2
x2 ln(1 +

√
2)

=

√
2 + ln(1 +

√
2)

2
x2

We used the fact that x is everywhere nonnegative on our surface so that√
x2 = x. ∫

F · da = −
∫ 2

0

∫ x

0

√
x2 + y2 dy dx

= −
∫ 2

0

√
2 + ln(1 +

√
2)

2
x2 dx

= −8

3

√
2 + ln(1 +

√
2)

2

= −4

3
[
√

2 + ln(1 +
√

2)] ≈ −3.06

The negative result makes sense because the vector field points downward
(in the −z direction) in the xy plane.

Appendix D

A Catalog of Fields, Paths,
Surfaces, and Volumes

This chapter is a literate Haskell file. We give it the module name Catalog

so that we can load these Haskell definitions elsewhere if we wish. We also
import some types and functions from the CoordinateSystems module in
Chapter 16.

{-# OPTIONS_GHC -Wall #-}

module Catalog where

import CoordinateSystems

(ScalarField

, cartesianCoordinates

)

D.1 Scalar Fields

D.1.1 Scalar fields expressed in Cartesian coordinates

D.1.1.1 f(x, y, z) = x2y3z4

247

248APPENDIX D. A CATALOGOF FIELDS, PATHS, SURFACES, AND VOLUMES

scalarField111 :: ScalarField

scalarField111 p = let (x,y,z) = cartesianCoordinates p

in x**2 * y**3 * z**4

D.1.1.2 Electric potential produced by a point charge q at the
origin

V (x, y, z) =
1

4πε0

q√
x2 + y2 + z2

D.1.1.3 f(x, y, z) = x4 + y4 + z4

D.1.1.4 Electric potential from a plane of charge with surface
charge density σ on the xy plane

V (x, y, z) = − σ

2ε0
|z|

D.1.1.5 f(x, y, z) = x2 + y2 + z2

D.1.1.6 f(x, y, z) = 4x2y3z4

D.1.2 Scalar fields expressed in cylindrical coordinates

D.1.2.1 f(s, φ, z) = s2z cosφ

D.1.2.2 Electric potential produced by a point charge q at the
origin

V (s, φ, z) =
1

4πε0

q√
s2 + z2

D.1.2.3 f(s, φ, z) = ln(s/a)

where a is a constant with dimensions of length.

D.1.2.4 Magnitude of electric field from a long line charge with
linear charge density λ along the z axis

E(s, φ, z) =
λ

2πε0s

D.1. SCALAR FIELDS 249

D.1.3 Scalar fields expressed in spherical coordinates

D.1.3.1 f(r, θ, φ) = 1/r2

D.1.3.2 Electric potential produced by a point charge q at the
origin

V (r, θ, φ) =
1

4πε0

q

r

D.1.3.3 f(r, θ, φ) = 1√
πa3
e−r/a

where a is a constant with dimensions of length.

D.1.3.4 f(r, θ, φ) = r2(3 cos2 θ − 1)

D.1.3.5 f(r, θ, φ) = r2 sin θ cosφ

D.1.4 Scalar fields expressed in a coordinate-independent
fashion

D.1.4.1 Electric potential produced by a point charge q at the
origin

V (r) =
1

4πε0

q

|r|

D.1.4.2 f(r) = b · r

where b is a constant vector.

D.1.4.3 f(r) = r · r

D.1.4.4 Electric potential produced by an ideal dipole with dipole
moment p at the origin

V (r) =
1

4πε0

p · r
|r|3

250APPENDIX D. A CATALOGOF FIELDS, PATHS, SURFACES, AND VOLUMES

D.2 Vector Fields

D.2.1 Vector fields expressed in Cartesian coordinates

D.2.1.1 F(x, y, z) = xyx̂ + yzŷ + yzẑ

D.2.1.2 Electric field from a plane of charge with surface charge
density σ on the xy plane

E(x, y, z) =

{ σ
2ε0

ẑ , z > 0

− σ
2ε0

ẑ , z < 0

D.2.1.3 Electric field produced by a point charge q at the origin

E(x, y, z) =
q

4πε0

xx̂ + yŷ + zẑ

(x2 + y2 + z2)3/2

D.2.1.4 F(x, y, z) = x2x̂ + y2ŷ + z2ẑ

D.2.1.5 F(x, y, z) = xy2x̂ + xy2ŷ + 3a3ẑ

where a is a constant with dimensions of length.

D.2.1.6 Electric field produced inside a planar slab by a uniform
volume charge density ρ0

E(x, y, z) =
ρ0
ε0
zẑ

D.2.1.7 Electric field from a plane of charge with surface charge
density σ0 on the yz plane

E(x, y, z) =

{ σ0
2ε0

x̂ , x > 0

− σ0
2ε0

x̂ , x < 0

D.2.2 Vector fields expressed in cylindrical coordinates

D.2.2.1 Electric field from a long line charge with linear charge
density λ along the z axis

E(s, φ, z) =
λ

2πε0s
ŝ

D.2. VECTOR FIELDS 251

D.2.2.2 Electric field from a plane of charge with surface charge
density σ on the z = 0 plane

E(s, φ, z) =

{ σ
2ε0

ẑ , z > 0

− σ
2ε0

ẑ , z < 0

D.2.2.3 F(s, φ, z) = s2ŝ

D.2.2.4 F(s, φ, z) = s2φ̂

D.2.2.5 F(s, φ, z) = szŝ + s2 sinφẑ

D.2.2.6 F(s, φ, z) = s2 cosφŝ + s2 sinφφ̂

D.2.2.7 Electric field produced inside a long cylinder by a uniform
volume charge density ρ0

E(s, φ, z) =
ρ0
2ε0

sŝ

D.2.3 Vector fields expressed in spherical coordinates

D.2.3.1 Electric field produced by a point charge q at the origin

E(r, θ, φ) =
1

4πε0

q

r2
r̂

D.2.3.2 Electric field produced by an ideal dipole at the origin
with dipole moment p in the z direction

E(r, θ, φ) =
p

4πε0r3
(2 cos θr̂ + sin θθ̂)

D.2.3.3 F(r, θ, φ) = rr̂ + r sin θθ̂ + r sin θ cosφφ̂

D.2.3.4 F(r, θ, φ) = r2r̂ + r2 sin θ cos θθ̂ + r2 sin2 θ cos2 φφ̂

D.2.3.5 Electric field produced inside a sphere by a uniform vol-
ume charge density ρ0

E(r, θ, φ) =
ρ0
3ε0

rr̂

252APPENDIX D. A CATALOGOF FIELDS, PATHS, SURFACES, AND VOLUMES

D.2.3.6 F(r, θ, φ) = r sin θθ̂

D.2.3.7 F(r, θ, φ) = r sin θφ̂

D.2.4 Vector fields expressed in a coordinate-independent
fashion

D.2.4.1 Electric field produced by a point charge q at the origin

E(r) =
q

4πε0

r

|r|3

D.2.4.2 Electric field produced by a point charge q1 at position r1

E(r) =
q1

4πε0

r− r1

|r− r1|3

D.2.4.3 F(r) = 3r

D.2.4.4 F(r) = (r · r)r

D.3 Paths

D.3.1 Paths expressed in Cartesian coordinates

D.3.1.1 The path from (0, 0, 0) to (x0, 0, 0) along the x axis, then to
(x0, y0, 0) along a straight line parallel to the y axis, then
to (x0, y0, z0) along a straight line parallel to the z axis

D.3.1.2 The path from (0, 0, 0) to (0, 0, z0) along the z axis, then to
(0, y0, z0) along a straight line parallel to the y axis, then
to (x0, y0, z0) along a straight line parallel to the x axis

D.3.1.3 The straight-line path from (0, 0, 0) to (a, a, a)

where a is a constant with dimensions of length.

D.3.1.4 The path around a square from (0, 0, 0) to (a, 0, 0) to (a, a, 0)
to (0, a, 0) to (0, 0, 0)

where a is a constant with dimensions of length.

D.3. PATHS 253

D.3.1.5 The boundary of surface D.4.1.2

D.3.1.6 The straight-line path from (0, 0, 3) to (2, 4, 3)

D.3.1.7 The path from (1, 2, 3) to (4, 5, 3) that runs from (1, 2, 3)
to (4, 2, 3) along a straight line and then from (4, 2, 3) to
(4, 5, 3) along a straight line

D.3.2 Paths expressed in cylindrical coordinates

D.3.2.1 The circular path with radius R in the z = 0 plane starting
at φ = 0 and going to φ = 2π

D.3.2.2 The straight path in the z = 0 plane from the origin along
φ = π/4 until s = R

D.3.2.3 The boundary of surface D.4.2.1

D.3.2.4 the path on the surface of a cylinder of radius R that goes
(i) along a circular arc from a point at (x, y, z) = (R, 0, h) to
a point at (x, y, z) = (0, R, h), and then (ii) along a straight-
line path from (x, y, z) = (0, R, h) to (x, y, z) = (0, R, 0)

z

h

y

x

R

254APPENDIX D. A CATALOGOF FIELDS, PATHS, SURFACES, AND VOLUMES

D.3.2.5 The closed path shown in the figure

x

y

R

D.3.3 Paths expressed in spherical coordinates

D.3.3.1 The path on the surface of a sphere of radius R that goes
(i) from the north pole at (x, y, z) = (0, 0, R) to the equator
at (x, y, z) = (R, 0, 0), and then (ii) along the equator to
the point (x, y, z) = (R/

√
2, R/

√
2, 0)

D.3.3.2 The straight-line path from the origin to the point with
spherical coordinates (r, θ, φ) = (2, π/6, π/4).

D.3.3.3 The path from (r, θ, φ) = (R, π/4, 0) to (r, θ, φ) = (R, π/4, π/2)
along which r = R and θ = π/4.

D.3.3.4 The path from (r, θ, φ) = (R, 0, 2π/3) to (r, θ, φ) = (R, π/2, 2π/3)
along which r = R and φ = 2π/3.

D.4 Surfaces

D.4.1 Surfaces expressed in Cartesian coordinates

D.4.1.1 The boundary of volume D.5.1.1

D.4.1.2 The region enclosed by a square in the xy plane with side
length L centered at the origin

If an orientation is needed, use ẑ.

D.4. SURFACES 255

D.4.1.3 The rectangular region shown in the figure

y

z

(0,−4)

(0, 4)

(2,−4)

(2, 4)

If an orientation is needed, use x̂.

D.4.1.4 The region enclosed by a triangle in the xy plane with ver-
tices at (x, y, z) = (0, 0, 0), (x, y, z) = (2, 0, 0), and (x, y, z) =
(2, 2, 0)

D.4.1.5 The rectangle with vertices (x, y, z) = (a, b, c), (x, y, z) =
(−a, b, c), (x, y, z) = (−a,−b, c), and (x, y, z) = (a,−b, c)

The constants a, b, and c are all positive. If an orientation is needed, use ẑ.

D.4.1.6 The rectangle with vertices (x, y, z) = (a, b, c), (x, y, z) =
(a,−b, c), (x, y, z) = (a,−b,−c), and (x, y, z) = (a, b,−c)

The constants a, b, and c are all positive. If an orientation is needed, use x̂.

256APPENDIX D. A CATALOGOF FIELDS, PATHS, SURFACES, AND VOLUMES

D.4.2 Surfaces expressed in cylindrical coordinates

D.4.2.1 A disk in the z = 0 plane with radius R, centered at the
origin

If an orientation is needed, use ẑ.

D.5. VOLUMES 257

D.4.2.2 The boundary of volume D.5.2.2

D.4.3 Surfaces expressed in spherical coordinates

D.4.3.1 A sphere of radius R centered at the origin

D.5 Volumes

D.5.1 Volumes expressed in Cartesian coordinates

D.5.1.1 A cube with side length L centered at the origin

D.5.1.2 The rectangular box in which 0 ≤ x ≤ a, 0 ≤ y ≤ b,
and 0 ≤ z ≤ c, where a, b, and c are some constants with
dimensions of length

D.5.2 Volumes expressed in cylindrical coordinates

D.5.2.1 The quarter cylinder with height h and radius R shown
in the diagram below

x

y

z

R

h

258APPENDIX D. A CATALOGOF FIELDS, PATHS, SURFACES, AND VOLUMES

D.5.2.2 A cylinder with height h and radius R centered at the
origin, with the cylinder axis on the z axis.

D.5.3 Volumes expressed in spherical coordinates

D.5.3.1 A ball of radius R centered at the origin

D.5.3.2 The upper half of a ball of radius 2, with the center of
the ball at the origin

Index

π, 6
(..) import, 225
., 9
.., 40
:h, 16
:help, 16
:k, 84
:kind, 84
:l, 21
:load, 21
:q, 16
:quit, 16
:t, 21, 31
:type, 21, 31
$, 9, 93

abs, 7
acceleration, 111
acceleration function, 128
acos, 7
acosh, 7
action, 103
air track, 109
alternative, 30
animate, 103
anonymous function, 24
application, 6
arithmetic sequence, 40

asin, 7
asinh, 7
associativity, 9–11
atan, 7
atanh, 7
average acceleration, 111

blue, 20, 66
Bool, 30
Boolean, 30

Catalog, 247
Char, 32
character, 32
Charge, 188
Color, 103
comment, 20
condition, 30
cons, 44
consequent, 30
const, 182
constructor, 44
CoordinateSystems, 169
cos, 7
cosh, 7
curve, 226

data constructor, 170, 179
declaration, 20

259

260 INDEX

definition, 20
displacement, 173
Display, 103
display, 103
Double, 20
drag coefficient, 115

effect, 104
electric field, 193, 194
else, 30
Euler method, 116
exp, 7

field, 174
foldr, 218
function application, 6
function type, 21
function types, 33
functional programming, 5

Geometry, 177
gloss, 103
green, 66

:h, 16
Heaviside step function, 30
:help, 16
higher-order function, 50

if, 30
in, 55
inertia, 109
infix, 8
instance, 66
instantaneous acceleration, 111
IO, 96, 103

:k, 84
key, 86
key-value pair, 86

keyword, 30
kind, 84
:kind, 84

:l, 21
lambda calculus, 24
lambda function, 24
learn-physics, 137
let, 55
linear charge density, 187
list type, 40
literate Haskell, 41
:load, 21
log, 7

magnetic field, 207
maybe types, 83
Mechanics1D, 127

namespace, 170, 179
net force, 112
Newton’s First Law, 109
Newton’s Second Law, 109, 110
not, 31
not-gloss, 103

operator, 8
orange, 20

path, 226
pattern matching, 35
pi, 6
Picture, 103
play, 103
point charge, 187
point-free style, 119, 172, 218
postfix, 8
precedence, 8–11
predicate, 58

INDEX 261

prefix, 8
purple,bright purple, 30

:q, 16
:quit, 16

R, 169

scope, 15
section, 71
signature, 20
simulate, 103
sin, 7
sinh, 7
spring constant, 125
sqrt, 7
state, 116, 149
state update rule, 116
step function, 30
string, 33
surface charge density, 188
surface current density, 203

:t, 21, 31

tan, 7
tanh, 7
then, 30
tuple, 43
type, 20, 29, 37
type, 169
:type, 21, 31
type class, 30, 65
type constructor, 84
type signature, 20
type synonym, 96, 169
type variable, 41, 66

underscore, 45, 82, 93
unit step function, 30

value, 34, 37, 86
variable identifier, 21
vector field, 194
VectorIntegrals, 225
velocity, 110
volume charge density, 188
volume current density, 203

