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Everyone is familiar with the Pythagorean Theorem, which states that if a
and b are the lengths of the legs of a right triangle and c is the length of the
hypotenuse, then a2+b2 = c2. Also familiar is the “3-4-5” right triangle. It is an
example of three whole numbers that satisfy the equation in the theorem. Other
such examples, from less familiar to downright obscure, are right triangles with
side lengths 5-12-13, 35-12-37, and 45-28-53. Why are these interesting? Well,
if you try to look for right triangles with whole number side lengths by trial and
error, you will mostly be frustrated, since most of the time two whole number
side lengths go with an irrational third side, like 1-1-

√
2. Is there a pattern to

the whole number triples? If so, what is it?

Problem A.Describe all possible triples (called Pythagorean triples)
of whole numbers (a, b, c) which can occur as the lengths of the three
sides of a right triangle. In other words, find all positive whole num-
ber solutions to the equation a2 + b2 = c2.

A complete solution was known to the Greeks by about 500 BCE ([3], p.37).
Weisstein gives a thorough survey of solutions to this and related problems on
his MathWorld website [4]. In this paper we describe a solution which uses
a beautiful map called stereographic projection. Similar presentations can be
found in [1] and [2].
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Figure 1: Pythagorean triple (a, b, c) and associated unit circle point (a/c, b/c)

First we make an observation that transforms the problem to a question
about points on the unit circle. If (a, b, c) is a Pythagorean triple, we can
divide both sides of a2 + b2 = c2 by c2 to obtain (a/c)2 + (b/c)2 = 1. So
a Pythagorean triple (a, b, c) gives rise to a point (a/c, b/c) on the unit circle
in the first quadrant, both of whose coordinates are rational. See Figure 1.
Conversely, suppose we have a point P on the unit circle in the first quadrant
with rational x and y coordinates, say P = (m/n, p/q). Multiplying both sides
of (m/n)2+(p/q)2 = 1 by n2q2, we obtain (mq)2+(pn)2 = (nq)2, so (mq, pn, nq)
is a Pythagorean triple. This correspondence between Pythagorean triples and
points on the unit circle in the first quadrant with rational coordinates is not

one-to-one. For example, the triples (3, 4, 5) and (6, 8, 10) both correspond to the
unit circle point (3/5, 4/5). Indeed, for any triple (a, b, c), all of its multiples
(ka, kb, kc) share the same unit circle point (a/c, b/c). A Pythagorean triple
(a, b, c) is called reduced if a, b, c share no common factors. The advantage of
considering reduced triples is that each circle point with rational coordinates
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corresponds to exactly one reduced triple. Thus we arrive at a new version of
the problem.

Problem B. Describe all points on the unit circle in the first quad-
rant with rational coordinates.

If we can solve problem B, then problem A is solved by these steps.

1. For each unit circle point (m/n, p/q), generate a triple (mq, pn, nq).

2. Remove common factors (if there are any) to produce a reduced triple
(a, b, c).

3. Now we have an infinite family of triples which are positive whole number
multiples (ka, kb, kc) of the reduced triple (a, b, c). In this way we account
for all possible triples.

But how do we solve problem B? The key is stereographic projection which we
describe in the next paragraph.
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Figure 2: Stereographic projection

Let Q be the first quadrant of the unit circle in the x, y-plane. Given a
point P = (x, y) on Q, let L be the line through P and (0, 1). Let s(P ) be the
x-coordinate of the intersection of L with the x axis. See Figure 2. This defines
a one-to-one correspondence s:Q → (1,∞) called stereographic projection. By
inspection of the similar triangles in Figure 3, we see that the formula for s is

s(x, y) =
x

1− y
.
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Figure 3: Similar triangles yield a formula for s(P )

To find a formula for s−1, we solve the pair of equations x/(1− y) = a and
x2 + y2 = 1 for x and y in terms of a. We obtain

s−1(a) =

(

2a

a2 + 1
,
a2 − 1

a2 + 1

)

.

From these expressions, it is apparent that s takes points with rational co-
ordinates to rational numbers, and s−1 takes rational numbers to points with
rational coordinates. Thus we arrive at yet another version of the problem.
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Problem C. Describe the set of rational numbers greater than 1.

A straightforward solution to problem C is the following list in “dictionary
order” of all reduced fractions m/n > 1.

2/1, 3/1, 3/2, 4/1, 4/3, 5/1, 5/2, 5/3, 5/4, . . . .

Dictionary order means that you read the expression m/n from left to right like
a “word.” The word m/n comes before the word p/q if m < p or if m = p and
n < q (just the same rules as for words in a dictionary). Reduced means that
m,n share no common factors. Notice m > n for each of the fractions since
m/n > 1.

Here’s how to put all these observations together to solve the problem of
Pythagorean triples. Beginning with the first rational 2/1 in the above list, use
inverse stereographic projection to find the unit circle point (4/5, 3/5). This
corresponds to the reduced Pythagorean triple (4, 3, 5), which in turn has an
infinite family (4k, 3k, 5k) of all of its positive whole number multiples. Re-
peating this process as we move down the list reduced rationals greater than
1 accounts for all possible Pythagorean triples. The following table shows the
first few steps of the process.

rational a = m/n circle point s−1(a) reduced triple (a, b, c)
2/1 (4/5, 3/5) (4, 3, 5)
3/1 (6/10, 8/10) (3, 4, 5)
3/2 (12/13, 5/13) (12, 5, 13)
4/1 (8/17, 15/17) (8, 15, 17)
4/3 (24/25, 7/25) (24, 7, 25)
...

...
...

Table 1: Ordered list of reduced Pythagorean triples

We have shown how finding integer solutions to the equation a2 + b2 = c2

can be rephrased as a problem in analytic geometry, namely, finding points on
the unit circle with rational coordinates. We demonstrated how this problem
is solved by means of explicit formulas for stereographic projection and its in-
verse, and how the description of rational points on the circle translates into a
description of Pythagorean triples.
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